TY - GEN A1 - Motagh, Mahdi T1 - Tectonic and non-tectonic deformation monitoringg using satellite radar interferometry Y1 - 2007 CY - Potsdam ER - TY - INPR A1 - Melnick, Daniel A1 - Moreno, Marcos A1 - Motagh, Mahdi A1 - Cisternas, Marco A1 - Wesson, Robert L. T1 - Splay fault slip during the M-w 8.8 2010 maule Chile earthquake reply T2 - Geology Y1 - 2013 U6 - https://doi.org/10.1130/G34825Y.1 SN - 0091-7613 SN - 1943-2682 VL - 41 IS - 12 SP - E310 EP - E310 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Melnick, Daniel A1 - Moreno, Marcos A1 - Motagh, Mahdi A1 - Cisternas, Marco A1 - Wesson, Robert L. T1 - Splay fault slip during the M-w 8.8 2010 Maule Chile earthquake JF - Geology N2 - Splay faults are thrusts that emerge from the plate boundaries of subduction zones. Such structures have been mapped at several convergent margins and their activity commonly ascribed to large megathrust earthquakes. However, the behavior of splay faults during the earthquake cycle is poorly constrained because typically these structures are located offshore and are difficult to access. Here we use geologic mapping combined with space and land geodesy, as well as offshore sonar data, to document surface-fault ruptures and coastal uplift at Isla Santa Maria in south-central Chile (37 degrees S) caused by the 27 February 2010 Maule earthquake (M-w 8.8). During the earthquake, the island was tilted parallel to the margin, and normal faults ruptured the surface and adjacent ocean bottom. We associate tilt and crestal normal faulting with growth of an anticline above a blind reverse fault rooted in the Nazca-South America plate boundary, which slipped during the Maule earthquake. The splay fault system has formed in an area of reduced coseismic plate-boundary slip, suggesting that anelastic deformation in the upper plate may have restrained the 2010 megathrust rupture. Surface fault breaks were accompanied by prominent discharge of fluids. Our field observations support the notion that splay faulting may frequently complement and influence the rupture of subduction-zone earthquakes. Y1 - 2012 U6 - https://doi.org/10.1130/G32712.1 SN - 0091-7613 VL - 40 IS - 3 SP - 251 EP - 254 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Teshebaeva, Kanayim A1 - Roessner, Sigrid A1 - Echtler, Helmut Peter A1 - Motagh, Mahdi A1 - Wetzel, Hans-Ulrich A1 - Molodbekov, Bolot T1 - ALOS/PALSAR InSAR Time-Series Analysis for Detecting Very Slow-Moving Landslides in Southern Kyrgyzstan JF - Remote sensing N2 - This study focuses on evaluating the potential of ALOS/PALSAR time-series data to analyze the activation of deep-seated landslides in the foothill zone of the high mountain Alai range in the southern Tien Shan (Kyrgyzstan). Most previous field-based landslide investigations have revealed that many landslides have indicators for ongoing slow movements in the form of migrating and newly developing cracks. L-band ALOS/PALSAR data for the period between 2007 and 2010 are available for the 484 km(2) area in this study. We analyzed these data using the Small Baseline Subset (SBAS) time-series technique to assess the surface deformation related to the activation of landslides. We observed up to +/- 17 mm/year of LOS velocity deformation rates, which were projected along the local steepest slope and resulted in velocity rates of up to -63 mm/year. The obtained rates indicate very slow movement of the deep-seated landslides during the observation time. We also compared these movements with precipitation and earthquake records. The results suggest that the deformation peaks correlate with rainfall in the 3 preceding months and with an earthquake event. Overall, the results of this study indicated the great potential of L-band InSAR time series analysis for efficient spatiotemporal identification and monitoring of slope activations in this region of high landslide activity in Southern Kyrgyzstan. Y1 - 2015 U6 - https://doi.org/10.3390/rs70708973 SN - 2072-4292 VL - 7 IS - 7 SP - 8973 EP - 8994 PB - MDPI CY - Basel ER - TY - GEN A1 - Teshebaeva, Kanayim A1 - Roessner, Sigrid A1 - Echtler, Helmut Peter A1 - Motagh, Mahdi A1 - Wetzel, Hans-Ulrich A1 - Molodbekov, Bolot T1 - ALOS/PALSAR InSAR time-series analysis for detecting very slow-moving landslides in Southern Kyrgyzstan N2 - This study focuses on evaluating the potential of ALOS/PALSAR time-series data to analyze the activation of deep-seated landslides in the foothill zone of the high mountain Alai range in the southern Tien Shan (Kyrgyzstan). Most previous field-based landslide investigations have revealed that many landslides have indicators for ongoing slow movements in the form of migrating and newly developing cracks. L-band ALOS/PALSAR data for the period between 2007 and 2010 are available for the 484 km2 area in this study. We analyzed these data using the Small Baseline Subset (SBAS) time-series technique to assess the surface deformation related to the activation of landslides. We observed up to ±17 mm/year of LOS velocity deformation rates, which were projected along the local steepest slope and resulted in velocity rates of up to −63 mm/year. The obtained rates indicate very slow movement of the deep-seated landslides during the observation time. We also compared these movements with precipitation and earthquake records. The results suggest that the deformation peaks correlate with rainfall in the 3 preceding months and with an earthquake event. Overall, the results of this study indicated the great potential of L-band InSAR time series analysis for efficient spatiotemporal identification and monitoring of slope activations in this region of high landslide activity in Southern Kyrgyzstan. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 344 KW - interferometric SAR (InSAR) KW - small baseline subset (SBAS) KW - time-series KW - ALOS/PALSAR KW - deep seated landslide KW - very slow moving landslide Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400083 ER - TY - JOUR A1 - Flóvenz, Ólafur G. A1 - Wang, Rongjiang A1 - Hersir, Gylfi Páll A1 - Dahm, Torsten A1 - Hainzl, Sebastian A1 - Vassileva, Magdalena A1 - Drouin, Vincent A1 - Heimann, Sebastian A1 - Isken, Marius Paul A1 - Gudnason, Egill Á. A1 - Ágústsson, Kristján A1 - Ágústsdóttir, Thorbjörg A1 - Horálek, Josef A1 - Motagh, Mahdi A1 - Walter, Thomas R. A1 - Rivalta, Eleonora A1 - Jousset, Philippe A1 - Krawczyk, Charlotte M. A1 - Milkereit, Claus T1 - Cyclical geothermal unrest as a precursor to Iceland's 2021 Fagradalsfjall eruption JF - Nature geoscience N2 - Understanding and constraining the source of geodetic deformation in volcanic areas is an important component of hazard assessment. Here, we analyse deformation and seismicity for one year before the March 2021 Fagradalsfjall eruption in Iceland. We generate a high-resolution catalogue of 39,500 earthquakes using optical cable recordings and develop a poroelastic model to describe three pre-eruptional uplift and subsidence cycles at the Svartsengi geothermal field, 8 km west of the eruption site. We find the observed deformation is best explained by cyclic intrusions into a permeable aquifer by a fluid injected at 4 km depth below the geothermal field, with a total volume of 0.11 ± 0.05 km3 and a density of 850 ± 350 kg m–3. We therefore suggest that ingression of magmatic CO2 can explain the geodetic, gravity and seismic data, although some contribution of magma cannot be excluded. Y1 - 2022 U6 - https://doi.org/10.1038/s41561-022-00930-5 SN - 1752-0894 SN - 1752-0908 VL - 15 IS - 5 SP - 397 EP - 404 PB - Nature Research CY - Berlin ER -