TY - CHAP A1 - Carlsohn, Anja A1 - Weber, Josefine A1 - Müller, Juliane A1 - Stuwe, Anja A1 - Müller, Steffen A1 - Mayer, Frank T1 - Dietary intake to reduce body mass before competition in german judo athletes T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2012 SN - 0195-9131 VL - 44 SP - 109 EP - 109 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Verch, Ronald A1 - Hirschmüller, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank A1 - Müller, Steffen T1 - Is in-toing gait physiological in children? BT - Results of a large cohort study in 5910 healthy (pre-) school children JF - Gait & posture N2 - Research question: This study aimed to establish reference values in 1-14 year old healthy children and to implement FPA-percentile curves for daily clinical use. Methods: 5910 healthy children performed at least 3 repetitions of barefoot walking over an instrumented walkway using a pressure measurement platform. The FPA [degrees] was extracted and analyzed by age and gender (mean +/- standard deviation; median with percentiles, MANOVA (age, gender) and Wilcoxon-Signed-Rank test for intra-individual side differences (alpha = 0.05). Results: FPA maximum was observed in 2-year-old children and diminished significant until the age of 4 to moderate out-toeing. For ages 5-14, no statistically significant differences in FPA values were present (p > 0.05). MANOVA confirmed age (p < 0.001) and gender (p < 0.001) as significant FPA influencing factors, without combined effect (p > 0.05). In every age group, right feet showed significantly greater out-toeing (p < 0.05). Significance: Percentile values indicate a wide FPA range in children. FPA development in young children shows a spontaneous shift towards moderate external rotation (age 2-4), whereby in-toeing <= 1-5 degrees can be present, but can return to normal. Bilateral in-toeing after the age of four and unilateral in-toeing after the age of seven should be monitored. KW - Foot progression angle KW - Children KW - In-toeing KW - Out-toeing KW - Gait Y1 - 2018 U6 - https://doi.org/10.1016/j.gaitpost.2018.08.019 SN - 0966-6362 SN - 1879-2219 VL - 66 SP - 70 EP - 75 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Static and dynamic foot characteristics in children aged 1-13 years a cross-sectional study JF - Gait & posture N2 - The aim of this study was to acquire static and dynamic foot geometry and loading in childhood, and to establish data for age groups of a population of 1-13 year old infants and children. A total of 10,382 children were recruited and 7788 children (48% males and 52% females) were finally included into the data analysis. For static foot geometry foot length and foot width were quantified in a standing position. Dynamic foot geometry and loading were assessed during walking on a walkway with self selected speed (Novel Emed X, 100 Hz, 4 sensors/cm(2)). Contact area (CA), peak pressure (PP), force time integral (FTI) and the arch index were calculated for the total, fore-, mid- and hindfoot. Results show that most static and dynamic foot characteristics change continuously during growth and maturation. Static foot length and width increased with age from 13.1 +/- 0.8 cm (length) and 5.7 +/- 0.4 cm (width) in the youngest to 24.4 +/- 1.5 cm (length) and 8.9 +/- 0.6 cm (width) in the oldest. A mean walking velocity of 0.94 +/- 0.25 m/s was observed. Arch-index ranged from 0.32 +/- 0.04 [a.u.] in the one-year old to 0.21 +/- 0.13 [a.u.] in the 5-year olds and remains constant afterwards. This study provides data for static and dynamic foot characteristics in children based on a cohort of 7788 subjects. Static and dynamic foot measures change differently during growth and maturation. Dynamic foot measurements provide additional information about the children's foot compared to static measures. KW - Children KW - Foot KW - Geometry KW - Arch-index KW - Plantar pressure Y1 - 2012 U6 - https://doi.org/10.1016/j.gaitpost.2011.10.357 SN - 0966-6362 VL - 35 IS - 3 SP - 389 EP - 394 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years JF - PLoS one N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0149924 SN - 1932-6203 VL - 11 IS - 2 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - GEN A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 284 KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90108 ER - TY - THES A1 - Müller, Anja Juliane T1 - Die Heilung von formellen Eheschließungsmängeln bei Ehen mit Auslandsberührung nach deutschem Recht T2 - Schriften zum Internationalen Recht Y1 - 2008 SN - 978-3-428-12867-9 VL - 175 PB - Duncker & Humblot CY - Berlin ER - TY - CHAP A1 - Weber, Josefine A1 - Müller, Juliane A1 - Otto, Christoph A1 - Scharhag-Rosenberger, Friederike A1 - Carlsohn, Anja A1 - Mayer, Frank T1 - Test-retest-reliability of metabolic and cardiovascular load during isokinetic strength testing T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2012 SN - 0195-9131 VL - 44 SP - 375 EP - 376 PB - Lippincott Williams & Wilkins CY - Philadelphia ER -