TY - JOUR A1 - Schoppa, Lukas A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Zöller, Gert A1 - Kreibich, Heidi T1 - Probabilistic flood loss models for companies JF - Water resources research N2 - Flood loss modeling is a central component of flood risk analysis. Conventionally, this involves univariable and deterministic stage-damage functions. Recent advancements in the field promote the use of multivariable and probabilistic loss models, which consider variables beyond inundation depth and account for prediction uncertainty. Although companies contribute significantly to total loss figures, novel modeling approaches for companies are lacking. Scarce data and the heterogeneity among companies impede the development of company flood loss models. We present three multivariable flood loss models for companies from the manufacturing, commercial, financial, and service sector that intrinsically quantify prediction uncertainty. Based on object-level loss data (n = 1,306), we comparatively evaluate the predictive capacity of Bayesian networks, Bayesian regression, and random forest in relation to deterministic and probabilistic stage-damage functions, serving as benchmarks. The company loss data stem from four postevent surveys in Germany between 2002 and 2013 and include information on flood intensity, company characteristics, emergency response, private precaution, and resulting loss to building, equipment, and goods and stock. We find that the multivariable probabilistic models successfully identify and reproduce essential relationships of flood damage processes in the data. The assessment of model skill focuses on the precision of the probabilistic predictions and reveals that the candidate models outperform the stage-damage functions, while differences among the proposed models are negligible. Although the combination of multivariable and probabilistic loss estimation improves predictive accuracy over the entire data set, wide predictive distributions stress the necessity for the quantification of uncertainty. KW - flood loss estimation KW - probabilistic modeling KW - companies KW - multivariable KW - models Y1 - 2020 U6 - https://doi.org/10.1029/2020WR027649 SN - 0043-1397 SN - 1944-7973 VL - 56 IS - 9 PB - American Geophysical Union CY - Washington ER - TY - RPRT A1 - Berghäuser, Lisa A1 - Schoppa, Lukas A1 - Ulrich, Jana A1 - Dillenardt, Lisa A1 - Jurado, Oscar E. A1 - Passow, Christian A1 - Samprogna Mohor, Guilherme A1 - Seleem, Omar A1 - Petrow, Theresia A1 - Thieken, Annegret T1 - Starkregen in Berlin BT - Meteorologische Ereignisrekonstruktion und Betroffenenbefragung N2 - In den Sommern der Jahre 2017 und 2019 kam es in Berlin an mehreren Orten zu Überschwemmungen in Folge von Starkregenereignissen. In beiden Jahren führte dies zu erheblichen Beeinträchtigungen im Alltag der Berliner:innen sowie zu hohen Sachschäden. Eine interdisziplinäre Taskforce des DFG-Graduiertenkollegs NatRiskChange untersuchte (1) die meteorologischen Eigenschaften zweier besonders eindrücklicher Unwetter, sowie (2) die Vulnerabilität der Berliner Bevölkerung gegenüber Starkregen. Eine vergleichende meteorologische Rekonstruktion der Starkregenereignisse von 2017 und 2019 ergab deutliche Unterschiede in der Entstehung und den Überschreitungswahrscheinlichkeiten der beiden Unwetter. So war das Ereignis von 2017 mit einer relativ großen räumlichen Ausdehnung und langer Dauer ein untypisches Starkregenereignis, während es sich bei dem Unwetter von 2019 um ein typisches, kurzzeitiges Starkregenereignis mit ausgeprägter räumlicher Heterogenität handelte. Eine anschließende statistische Analyse zeigte, dass das Ereignis von 2017 für längere Niederschlagsdauern (>=24 h) als großflächiges Extremereignis mit Überschreitungswahrscheinlichkeiten von unter 1 % einzuordnen ist (d.h. Wiederkehrperioden >=100 Jahre). Im Jahr 2019 wurden dagegen ähnliche Überschreitungswahrscheinlichkeiten nur lokal und für kürzere Zeiträume (1-2 h) berechnet. Die Vulnerabilitätsanalyse basiert auf einer von April bis Juni 2020 in Berlin durchgeführten Onlinebefragung. Diese richtete sich an Personen, die bereits von vergangenen Starkregenereignissen betroffen waren und thematisierte das Schadensereignis selbst, daraus entstandene Beeinträchtigungen und Schäden, Risikowahrnehmung sowie Notfall- und Vorsorgemaßnahmen. Die erhobenen Umfragedaten (n=102) beziehen sich vornehmlich auf die Ereignisse von 2017 und 2019 und zeigen, dass die Berliner Bevölkerung sowohl im Alltag (z.B. bei der Beschaffung von Lebensmitteln) als auch im eigenen Haushalt (z.B. durch Überschwemmungsschäden) von den Unwettern beeinträchtigt war. Zudem deuteten die Antworten der Betroffenen auf Möglichkeiten hin, die Vulnerabilität der Gesellschaft gegenüber Starkregen weiter zu reduzieren - etwa durch die Unterstützung besonders betroffener Gruppen (z.B. Pflegende), durch gezielte Informationskampagnen zum Schutz vor Starkregen oder durch die Erhöhung der Reichweite von Unwetterwarnungen. Eine statistische Analyse zur Effektivität privater Notfall- und Vorsorgemaßnahmen auf Grundlage der Umfragedaten bestätigte vorherige Studienergebnisse. So gab es Anhaltspunkte dafür, dass durch das Umsetzen von Vorsorgemaßnahmen wie beispielsweise das Installieren von Rückstauklappen, Barriere-Systemen oder Pumpen Starkregenschäden reduziert werden können. Die Ergebnisse dieses Berichts unterstreichen die Notwendigkeit für ein integriertes Starkregenrisikomanagment, das die Risikokomponenten Gefährdung, Vulnerabilität und Exposition ganzheitlich und auf mehreren Ebenen (z.B. staatlich, kommunal, privat) betrachtet. N2 - In the summers of 2017 and 2019, the city of Berlin was hit by heavy rainfall leading to urban flooding in several locations. In both years, this led to considerable disruptions of the daily life and high property damage. With focus on two particularly impressive events a taskforce of the DFG Research Training Group NatRiskChange investigated (1) the meteorological characteristics of both events as well as (2) the vulnerability of the Berlin population to heavy rainfall. A comparative meteorological reconstruction of the 2017 and 2019 heavy rainfall events revealed fundamental differences between the two storms. The 2017 event was an atypical heavy rain event, as it was characterized by a relatively large spatial extent and long duration of rainfall, whereas the 2019 storm was a typical short duration heavy rain event with a distinct spatial heterogeneity. Subsequent statistical analysis indicated that the 2017 event should be classified as a large-scale extreme event with exceedance probabilities below 1 % for longer precipitation durations (i.e., return periods of over 100 years). In contrast, in 2019 similar exceedance probabilities were estimated only locally and for shorter durations (1-2 h). The vulnerability analysis of this taskforce was based on an online survey conducted in Berlin between April and June 2020. The survey was aimed at people who had experienced past heavy rainfall events in Berlin, and addressed the resulting impairments and damages, risk perceptions as well as emergency and preparedness measures. The survey data (n=102) primarily referred to the events of 2017 and 2019 and showed that the respondents were affected by the storms both in their daily lives (e.g., when purchasing food) and in their own households (e.g., due to flood damage). In addition, the analysis of the responses pointed to ways to further reduce society's vulnerability to heavy rain. That was, for example, by providing support to particularly affected groups (e.g., caregivers), through targeted information campaigns to protect against heavy rainfall or by improving the range of early warning systems. A statistical analysis of the efficacy of property-level emergency and preparedness measures based on the survey data confirmed previous study findings and provided evidence of reducing heavy rain damage through preparedness. The findings of the taskforce highlight the need for integrated heavy rainfall risk management that considers the risk components of hazard, vulnerability, and exposure holistically and at multiple levels (e.g., state, local and private households). KW - Starkregen KW - Risikomanagement KW - Meteorologische Ereignisanalyse KW - Betroffenenbefragung KW - Berlin KW - Urban Flooding KW - Risk reduction KW - Meteorological Event Analysis KW - Survey of affected residents KW - Berlin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-500560 ER - TY - THES A1 - Schoppa, Lukas T1 - Dynamics in the flood vulnerability of companies T1 - Dynamik der Hochwasservulnerabilität von Unternehmen N2 - River flooding is a constant peril for societies, causing direct economic losses in the order of $100 billion worldwide each year. Under global change, the prolonged concentration of people and assets in floodplains is accompanied by an emerging intensification of flood extremes due to anthropogenic global warming, ultimately exacerbating flood risk in many regions of the world. Flood adaptation plays a key role in the mitigation of impacts, but poor understanding of vulnerability and its dynamics limits the validity of predominant risk assessment methods and impedes effective adaptation strategies. Therefore, this thesis investigates new methods for flood risk assessment that embrace the complexity of flood vulnerability, using the understudied commercial sector as an application example. Despite its importance for accurate risk evaluation, flood loss modeling has been based on univariable and deterministic stage-damage functions for a long time. However, such simplistic methods only insufficiently describe the large variation in damage processes, which initiated the development of multivariable and probabilistic loss estimation techniques. The first study of this thesis developed flood loss models for companies that are based on emerging statistical and machine learning approaches (i.e., random forest, Bayesian network, Bayesian regression). In a benchmarking experiment on basis of object-level loss survey data, the study showed that all proposed models reproduced the heterogeneity in damage processes and outperformed conventional stage-damage functions with respect to predictive accuracy. Another advantage of the novel methods is that they convey probabilistic information in predictions, which communicates the large remaining uncertainties transparently and, hence, supports well-informed risk assessment. Flood risk assessment combines vulnerability assessment (e.g., loss estimation) with hazard and exposure analyses. Although all of the three risk drivers interact and change over time, such dependencies and dynamics are usually not explicitly included in flood risk models. Recently, systemic risk assessment that dissolves the isolated consideration of risk drivers has gained traction, but the move to holistic risk assessment comes with limited thoroughness in terms of loss estimation and data limitations. In the second study, I augmented a socio-hydrological system dynamics model for companies in Dresden, Germany, with the multivariable Bayesian regression loss model from the first study. The additional process-detail and calibration data improved the loss estimation in the systemic risk assessment framework and contributed to more accurate and reliable simulations. The model uses Bayesian inference to quantify uncertainty and learn the model parameters from a combination of prior knowledge and diverse data. The third study demonstrates the potential of the socio-hydrological flood risk model for continuous, long-term risk assessment and management. Using hydroclimatic ad socioeconomic forcing data, I projected a wide range of possible risk trajectories until the end of the century, taking into account the adaptive behavior of companies. The study results underline the necessity of increased adaptation efforts to counteract the expected intensification of flood risk due to climate change. A sensitivity analysis of the effectiveness of different adaptation measures and strategies revealed that optimized adaptation has the potential to mitigate flood risk by up to 60%, particularly when combining structural and non-structural measures. Additionally, the application shows that systemic risk assessment is capable of capturing adverse long-term feedbacks in the human-flood system such as the levee effect. Overall, this thesis advances the representation of vulnerability in flood risk modeling by offering modeling solutions that embrace the complexity of human-flood interactions and quantify uncertainties consistently using probabilistic modeling. The studies show how scarce information in data and previous experiments can be integrated in the inference process to provide model predictions and simulations that are reliable and rich in information. Finally, the focus on the flood vulnerability of companies provides new insights into the heterogeneous damage processes and distinct flood coping of this sector. N2 - Flussüberschwemmungen sind eine ständige Gefahr für die Gesellschaft und verursachen jedes Jahr weltweit wirtschaftliche Schäden in der Größenordnung von 100 Milliarden US-Dollar. Im Zuge des globalen Wandels erhöht sich die Konzentration von Menschen und Vermögenswerten in Überschwemmungsgebieten kontinuierlich, während der menschengemachte Klimawandel Hochwasserextreme verstärkt. Die Überlagerung dieser Prozesse führt zu einer Verschärfung des Hochwasserrisikos in vielen Weltregionen. Der Hochwasseranapassung kommt dabei eine Schlüsselrolle bei der Abschwächung von Schäden zu. Allerdings ist das Verständnis von Hochwasservulnerabilität (d.h., Anfälligkeit gegenüber Schäden) und damit verbundener Dynamiken noch sehr begrenzt, was die Risikoabschätzung und die Entwicklung von Anpassungsstrategien erschwert. In dieser kumulativen Dissertation werden anhand von drei Studien neue Methoden zur Hochwasserrisikoabschätzung für den gewerblichen Sektor vorgestellt, der in der Vergangenheit wenig untersucht wurde. Die erste Studie präsentiert Hochwasserschadensmodelle die auf statistischen Methoden und maschinellem Lernen basieren und eine Vielzahl von Einflussfaktoren berücksichtigen. In Verbindung mit probabilistischen Vorhersagen führt dies zu einer Verbesserung der Modellgenauigkeit und -verlässlichkeit. Anschließend wird in einer Pilotstudie für Dresden, Deutschland, eines der neuen Schadensmodelle in ein ganzheitliches systemdynamisches Modell integriert, um Veränderungen in Hochwasservulnerabilität und -risiko kontinuierlich zu simulieren. Die Methode integriert zusätzliche Prozessdetails und Kalibrierungsdaten in das Modell und verbessert so die Simulationsleistung. Schließlich werden mit dem systemdynamischen Modell in der dritten Studie langfristige Projektionsläufe durchgeführt, um die Entwicklung des Hochwasserrisikos bis zum Ende des Jahrhunderts abzuschätzen. Die Ergebnisse der Studie unterstreichen das Potential von Hochwasseranpassung - insbesondere in Zeiten des Klimawandels - und demonstrieren die Fähigkeit ganzheitlicher Modellierungsansätze, ungünstige Entwicklungen des Risikos frühzeitig aufzudecken. Insgesamt verbessert diese Arbeit die Darstellung der Vulnerabilität in der Hochwasserrisikoabschätzung, indem sie Modellierungslösungen anbietet, die der Komplexität der Wechselwirkungen zwischen Mensch und Hochwasser gerecht werden und Unsicherheiten konsequent quantifizieren. KW - fluvial flooding KW - risk analysis KW - vulnerability KW - probabilistic modeling KW - Loss modeling KW - socio-hydrology KW - commercial sector KW - Flusshochwasser KW - Risikoanalyse KW - Vulnerabilität KW - probabilistische Modellierung KW - Schadensmodellierung KW - Soziohydrologie KW - gewerblicher Sektor Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-592424 ER -