TY - JOUR A1 - Lorenz, Melanie A1 - Altenberger, Uwe A1 - Trumbull, Robert B. A1 - Lira, Raul A1 - Lopez de Luchi, Monica Graciela A1 - Günter, Christina A1 - Eidner, Sascha T1 - Chemical and textural relations of britholite- and apatite-group minerals from hydrothermal REE mineralization at the Rodeo de los Molles deposit, Central Argentina JF - American mineralogist : an international journal of earth and planetary materials N2 - Britholite group minerals (REE,Ca)(5)[(Si,P)O-4](3)(OH,F) are widespread rare-earth minerals in alkaline rocks and their associated metasomatic zones, where they usually are minor accessory phases. An exception is the REE deposit Rodeo de los Molles, Central Argentina, where fluorbritholite-(Ce) (FBri) is the main carrier of REE and is closely intergrown with fluorapatite (FAp). These minerals reach an abundance of locally up to 75 modal% (FBri) and 20 modal% (FAp) in the vein mineralizations. The Rodeo de los Molles deposit is hosted by a fenitized monzogranite of the Middle Devonian Las Chacras-Potrerillos batholith. The REE mineralization consists of fluorbritholite-(Ce), britholite-(Ce), fluorapatite, allanite-(Ce), and REE fluorcarbonates, and is associated with hydrothermal fluorite, quartz, albite, zircon, and titanite. The REE assemblage takes two forms: irregular patchy shaped REE-rich composites and discrete cross-cutting veins. The irregular composites are more common, but here fluorbritholite-(Ce) is mostly replaced by REE carbonates. The vein mineralization has more abundant and better-preserved britholite phases. The majority of britholite grains at Rodeo de los Molles are hydrothermally altered, and alteration is strongly enhanced by metamictization, which is indicated by darkening of the mineral, loss of birefringence, porosity, and volume changes leading to polygonal cracks in and around altered grains. A detailed electron microprobe study of apatite-britholite minerals from Rodeo de los Molles revealed compositional variations in fluorapatite and fluorbritholite-(Ce) consistent with the coupled substitution of REE3+ + Si4+ = Ca2+ + P5+ and a compositional gap of similar to 4 apfu between the two phases, which we interpret as a miscibility gap. Micrometer-scale intergrowths of fluorapatite in fluorbritholite-(Ce) minerals and vice versa are chemically characterized here for the first time and interpreted as exsolution textures that formed during cooling below the proposed solvus. KW - Britholite KW - apatite KW - exsolution textures KW - miscibility gap KW - compositional gap KW - REE KW - fenite KW - alkaline granites KW - hydrothermal alteration Y1 - 2019 U6 - https://doi.org/10.2138/am-2019-6969 SN - 0003-004X SN - 1945-3027 VL - 104 IS - 12 SP - 1840 EP - 1850 PB - Mineralogical Society of America CY - Chantilly ER - TY - JOUR A1 - Ribacki, Enrico A1 - Trumbull, Robert B. A1 - Lopez De Luchi, Monica Graciela A1 - Altenberger, Uwe T1 - The chemical and B-Isotope composition of Tourmaline from intra-granitic Pegmatites in the Las Chacras-Potrerillos Batholith, Argentina JF - The Canadian mineralogist : journal of the Mineralogical Association of Canada N2 - The Devonian Las Chacras-Potrerillos batholith comprises six nested monzonitic to granitic intrusions with metaluminous to weakly peraluminous composition and a Sr-Nd isotopic signature indicating a dominantly juvenile mantle-derived source. The chemically most evolved units in the southern batholith contain a large number of intra-granitic, pod-shaped tourmaline-bearing pegmatites. This study uses in situ chemical and boron isotopic analyses of tourmaline from nine of these pegmatites to discuss their relationship to the respective host intrusions and the implications of their B-isotope composition for the source and evolution of the magmas. The tourmalines reveal a diversity in element composition (e.g., FeO, MgO, TiO2, CaO, MnO, F) which distinguishes individual pegmatites from one another. However, all have a narrow 5 11 B range of -13.7 to -10.5%0 (n = 100) which indicates a relatively uniform magmatic system and similar temperature conditions during tourmaline crystallization. The average delta(11) B value of -11.7%0 is typical for S-type granites and is within the range reported for peraluminous granites. pegmatites, and metamorphic units of the Ordovician basement into which the Las Chacras-Potrerillos batholith intruded. The B-isotope evidence argues for a crustal boron source like that of the Ordovician basement, in contrast to the metaluminous to weakly peraluminous composition and juvenile initial Sr and Nd isotope ratios of the Las Chacras-Potrerillos batholith magmas. We propose that the boron was not derived from the magma source region but was incorporated from dehydration melting of elastic metasedimentary rocks higher up in the crustal column. KW - pegmatite KW - tourmaline KW - SIMS KW - B-isotopes KW - Las Chacras-Potrerillos KW - Sierra de San Luis KW - Argentina Y1 - 2022 U6 - https://doi.org/10.3749/canmin.2100036 SN - 0008-4476 SN - 1499-1276 VL - 60 IS - 1 SP - 49 EP - 66 PB - Association of Canada CY - Ottawa ER -