TY - JOUR A1 - Blüthgen, Nico A1 - Dormann, Carsten F. A1 - Prati, Daniel A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Hoelzel, Norbert A1 - Alt, Fabian A1 - Boch, Steffen A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Müller, Jörg A1 - Nieschulze, Jens A1 - Renner, Swen C. A1 - Schöning, Ingo A1 - Schumacher, Uta A1 - Socher, Stephanie A. A1 - Wells, Konstans A1 - Birkhofer, Klaus A1 - Buscot, Francois A1 - Oelmann, Yvonne A1 - Rothenwöhrer, Christoph A1 - Scherber, Christoph A1 - Tscharntke, Teja A1 - Weiner, Christiane N. A1 - Fischer, Markus A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - A quantitative index of land-use intensity in grasslands integrating mowing, grazing and fertilization JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Land use is increasingly recognized as a major driver of biodiversity and ecosystem functioning in many current research projects. In grasslands, land use is often classified by categorical descriptors such as pastures versus meadows or fertilized versus unfertilized sites. However, to account for the quantitative variation of multiple land-use types in heterogeneous landscapes, a quantitative, continuous index of land-use intensity (LUI) is desirable. Here we define such a compound, additive LUI index for managed grasslands including meadows and pastures. The LUI index summarizes the standardized intensity of three components of land use, namely fertilization, mowing, and livestock grazing at each site. We examined the performance of the LUI index to predict selected response variables on up to 150 grassland sites in the Biodiversity Exploratories in three regions in Germany(Alb, Hainich, Schorlheide). We tested the average Ellenberg nitrogen indicator values of the plant community, nitrogen and phosphorus concentration in the aboveground plant biomass, plant-available phosphorus concentration in the top soil, and soil C/N ratio, and the first principle component of these five response variables. The LUI index significantly predicted the principal component of all five response variables, as well as some of the individual responses. Moreover, vascular plant diversity decreased significantly with LUI in two regions (Alb and Hainich). Inter-annual changes in management practice were pronounced from 2006 to 2008, particularly due to variation in grazing intensity. This rendered the selection of the appropriate reference year(s) an important decision for analyses of land-use effects, whereas details in the standardization of the index were of minor importance. We also tested several alternative calculations of a LUI index, but all are strongly linearly correlated to the proposed index. The proposed LUI index reduces the complexity of agricultural practices to a single dimension and may serve as a baseline to test how different groups of organisms and processes respond to land use. In combination with more detailed analyses, this index may help to unravel whether and how land-use intensities, associated disturbance levels or other local or regional influences drive ecological processes. KW - Agro-ecosystems KW - Biodiversity exploratories KW - Grassland management KW - Land-use impacts KW - Livestock density KW - Meadows KW - Nitrogen KW - Pastures Y1 - 2012 U6 - https://doi.org/10.1016/j.baae.2012.04.001 SN - 1439-1791 VL - 13 IS - 3 SP - 207 EP - 220 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Allan, Eric A1 - Bossdorf, Oliver A1 - Dormann, Carsten F. A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Tscharntke, Teja A1 - Blüthgen, Nico A1 - Bellach, Michaela A1 - Birkhofer, Klaus A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Chatzinotas, Antonis A1 - Christ, Sabina A1 - Daniel, Rolf A1 - Diekötter, Tim A1 - Fischer, Christiane A1 - Friedl, Thomas A1 - Glaser, Karin A1 - Hallmann, Christine A1 - Hodac, Ladislav A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klein, Alexandra-Maria A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Müller, Jörg A1 - Nacke, Heiko A1 - Pasalic, Esther A1 - Rillig, Matthias C. A1 - Rothenwoehrer, Christoph A1 - Schally, Peter A1 - Scherber, Christoph A1 - Schulze, Waltraud X. A1 - Socher, Stephanie A. A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Türke, Manfred A1 - Weiner, Christiane N. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Gockel, Sonja A1 - Gorke, Martin A1 - Hemp, Andreas A1 - Renner, Swen C. A1 - Schöning, Ingo A1 - Pfeiffer, Simone A1 - König-Ries, Birgitta A1 - Buscot, Francois A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Interannual variation in land-use intensity enhances grassland multidiversity JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. KW - biodiversity loss KW - agricultural grasslands KW - Biodiversity Exploratories Y1 - 2014 U6 - https://doi.org/10.1073/pnas.1312213111 SN - 0027-8424 VL - 111 IS - 1 SP - 308 EP - 313 PB - National Acad. of Sciences CY - Washington ER -