TY - JOUR A1 - Chen, Shun-Gang A1 - Li, Ji A1 - Zhang, Fan A1 - Xiao, Bo A1 - Hu, Jia-Ming A1 - Cui, Yin-Qiu A1 - Hofreiter, Michael A1 - Hou, Xin-Dong A1 - Sheng, Gui-Lian A1 - Lai, Xu-Long A1 - Yuan, Jun-Xia T1 - Different maternal lineages revealed by ancient mitochondrial genome of Camelus bactrianus from China JF - Mitochondrial DNA Part A N2 - Domestic Bactrian camel (Camelus bactrianus) used to be one of the most important livestock species in Chinese history, as well as the major transport carrier on the ancient Silk Road. However, archeological studies on Chinese C. bactrianus are still limited, and molecular biology research on this species is mainly focused on modern specimens. In this study, we retrieved the complete mitochondrial genome from a C. bactrianus specimen, which was excavated from northwestern China and dated at 1290-1180 cal. Phylogenetic analyses using 18 mitochondrial genomes indicated that the C. bactrianus clade was divided into two maternal lineages. The majority of samples originating from Iran to Japan and Mongolia belong to subclade A1, while our sample together with two Mongolian individuals formed the much smaller subclade A2. Furthermore, the divergence time of these two maternal lineages was estimated as 165 Kya (95% credibility interval 117-222 Kya), this might indicate that several different evolutionary lineages were incorporated into the domestic gene pool during the initial domestication process. Bayesian skyline plot (BSP) analysis a slow increase in female effective population size of C. bactrianus from 5000 years ago, which to the beginning of domestication of C. bactrianus. The present study also revealed that there were extensive exchanges of genetic information among C. bactrianus populations in regions along the Silk Road. KW - Camelus bactrianus KW - mitochondrial genome KW - ancient DNA KW - phylogeny KW - maternal lineages Y1 - 2019 U6 - https://doi.org/10.1080/24701394.2019.1659250 SN - 2470-1394 SN - 2470-1408 VL - 30 IS - 7 SP - 786 EP - 793 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - THES A1 - Li, Xia T1 - Global warming - high night temperature, heat and drought - affects enzyme activity, transcriptome and metabolome in rice cultivars with different tolerance Y1 - 2014 CY - Potsdam ER - TY - JOUR A1 - Xia, Haiyan A1 - Cao, Yun A1 - Dai, Xiaoman A1 - Marelja, Zvonimir A1 - Zhou, Di A1 - Mo, Ran A1 - Al-Mahdawi, Sahar A1 - Pook, Mark A. A1 - Leimkühler, Silke A1 - Rouault, Tracey A. A1 - Li, Kuanyu T1 - Novel Frataxin Isoforms May Contribute to the Pathological Mechanism of Friedreich Ataxia JF - PLOS ONE N2 - Friedreich ataxia (FRDA) is an inherited neurodegenerative disease caused by frataxin (FXN) deficiency. The nervous system and heart are the most severely affected tissues. However, highly mitochondria-dependent tissues, such as kidney and liver, are not obviously affected, although the abundance of FXN is normally high in these tissues. In this study we have revealed two novel FXN isoforms (II and III), which are specifically expressed in affected cerebellum and heart tissues, respectively, and are functional in vitro and in vivo. Increasing the abundance of the heart-specific isoform III significantly increased the mitochondrial aconitase activity, while over-expression of the cerebellum-specific isoform II protected against oxidative damage of Fe-S cluster-containing aconitase. Further, we observed that the protein level of isoform III decreased in FRDA patient heart, while the mRNA level of isoform II decreased more in FRDA patient cerebellum compared to total FXN mRNA. Our novel findings are highly relevant to understanding the mechanism of tissue-specific pathology in FRDA. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0047847 SN - 1932-6203 VL - 7 IS - 10 PB - PUBLIC LIBRARY SCIENCE CY - SAN FRANCISCO ER - TY - JOUR A1 - Han, Xiao Xia A1 - Li, Junbo A1 - Öner, Ibrahim Halil A1 - Zhao, Bing A1 - Leimkühler, Silke A1 - Hildebrandt, Peter A1 - Weidinger, Inez M. T1 - Nickel electrodes as a cheap and versatile platform for studying structure and function of immobilized redox proteins JF - Analytica chimica acta : an international journal devoted to all branches of analytical chemistry N2 - Practical use of many bioelectronic and bioanalytical devices is limited by the need of expensive materials and time consuming fabrication. Here we demonstrate the use of nickel electrodes as a simple and cheap solid support material for bioelectronic applications. The naturally nanostructured electrodes showed a surprisingly high electromagnetic surface enhancement upon light illumination such that immobilization and electron transfer reactions of the model redox proteins cytochrome b(5) (Cyt b(5)) and cytochrome c (Cyt c) could be followed via surface enhanced resonance Raman spectroscopy. It could be shown that the nickel surface, when used as received, promotes a very efficient binding of the proteins upon preservation of their native structure. The immobilized redox proteins could efficiently exchange electrons with the electrode and could even act as an electron relay between the electrode and solubilized myoglobin. Our results open up new possibility for nickel electrodes as an exceptional good support for bioelectronic devices and biosensors on the one hand and for surface enhanced spectroscopic investigations on the other hand. (C) 2016 Elsevier B.V. All rights reserved. KW - Ni electrodes KW - Redox proteins KW - Surface enhanced Raman spectroscopy KW - Electron relay KW - Biocompatibility KW - Electron transfer Y1 - 2016 U6 - https://doi.org/10.1016/j.aca.2016.08.053 SN - 0003-2670 SN - 1873-4324 VL - 941 SP - 35 EP - 40 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cui, Qianling A1 - Xia, Bihua A1 - Mitzscherling, Steffen A1 - Masic, Admir A1 - Li, Lidong A1 - Bargheer, Matias A1 - Moehwald, Helmuth T1 - Preparation of gold nanostars and their study in selective catalytic reactions JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - In this work, gold nanostars (AuNSs) with size around 90 nm were prepared through an easy one-step method. They show excellent catalytic activity and large surface-enhanced Raman scattering (SERS) activity at the same time. Surprisingly, they exhibited different catalytic performance on the reduction of aromatic nitro compounds with different substituents on the para position. To understand such a difference, the SERS spectra were recorded, showing that the molecular orientation of reactants on the gold surface were different. We anticipate that this research will help to understand the relationship of the molecular orientation with the catalytic activity of gold nanoparticles. KW - Nanoparticles KW - Gold KW - Catalytic reaction KW - Surface enhanced Raman scattering (SERS) KW - Molecular orientation Y1 - 2015 U6 - https://doi.org/10.1016/j.colsurfa.2014.10.028 SN - 0927-7757 SN - 1873-4359 VL - 465 SP - 20 EP - 25 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Li, Mingjun A1 - Schlaich, Christoph A1 - Zhang, Jianguang A1 - Donskyi, Ievgen A1 - Schwibbert, Karin A1 - Schreiber, Frank A1 - Xia, Yi A1 - Radnik, Jörg A1 - Schwerdtle, Tanja A1 - Haag, Rainer T1 - Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction JF - Journal of materials science & technology : JMST ; an international journal / spons. by the Chinese Society for Metals (CSM), the Chinese Materials Research Society (CMRS), Institute of Metal Research, Chinese Academy of Sciences N2 - Bacterial infection and osteogenic integration are the two main problems that cause severe complications after surgeries. In this study, the antibacterial and osteogenic properties were simultaneously introduced in biomaterials, where copper nanoparticles (CuNPs) were generated by in situ reductions of Cu ions into a mussel-inspired hyperbranched polyglycerol (MI-hPG) coating via a simple dip-coating method. This hyperbranched polyglycerol with 10 % catechol groups' modification presents excellent antifouling property, which could effectively reduce bacteria adhesion on the surface. In this work, polycaprolactone (PCL) electrospun fiber membrane was selected as the substrate, which is commonly used in biomedical implants in bone regeneration and cardiovascular stents because of its good biocompatibility and easy post-modification. The as-fabricated CuNPs-incorporated PCL membrane [PCL-(MI-hPG)-CuNPs] was confirmed with effective antibacterial performance via in vitro antibacterial tests against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and multi-resistant E. coli. In addition, the in vitro results demonstrated that osteogenic property of PCL-(MI-hPG)-CuNPs was realized by upregulating the osteoblast-related gene expressions and protein activity. This study shows that antibacterial and osteogenic properties can be balanced in a surface coating by introducing CuNPs. KW - Mussel-inspired coating KW - CuNPs KW - Multi-resistant bacteria KW - Antibacterial KW - Antifouling KW - Osteogenesis Y1 - 2021 U6 - https://doi.org/10.1016/j.jmst.2020.08.011 SN - 1005-0302 SN - 1941-1162 VL - 68 SP - 160 EP - 171 PB - Elsevier CY - Amsterdam [u.a.] ER -