TY - JOUR A1 - Figueroa Villegas, Sara A1 - Weiss, Jonathan R. A1 - Hongn, Fernando D. A1 - Pingel, Heiko A1 - Escalante, Leonardo A1 - Elías, Leonardo A1 - Aranda-Viana, R. Germán A1 - Strecker, Manfred T1 - Late pleistocene to recent deformation in the thick-skinned fold-and-thrust belt of Northwestern Argentina (Central Calchaqui Valley, 26 degrees S) JF - Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS N2 - The thick-skinned fold-and-thrust belt on the eastern flank of the Andean Plateau in northwestern Argentina (NWA) is a zone of active contractional deformation characterized by fault-bounded mountain ranges with no systematic spatiotemporal pattern of tectonic activity. In contrast, the thin-skinned Subandean fold-and-thrust belt of northern Argentina and southern Bolivia is characterized primarily by in-sequence (i.e., west to east) fault progression, with a narrow zone of Quaternary deformation focused at the front of the orogenic wedge. To better understand how recent deformation is accommodated across these mountain ranges and the Argentinian portion of the orogen in particular, estimating and comparing deformation rates and patterns across different timescales is essential. We present Late Pleistocene shortening rates for the central Calchaqui intermontane valley in NWA associated with at least three episodes of deformation. Global Positioning System data for the same region reveal a gradual decrease in horizontal surface velocities from the Eastern Cordillera toward the foreland, which contrasts with the rapid velocity gradient associated with a locked decollement in the Subandean Ranges of southern Bolivia. Our new results represent a small view of regional deformation that, when considered in combination with the shallow crustal seismicity and decadal-scale surface velocities, support the notion that strain release in NWA is associated with numerous slowly deforming structures that are distributed throughout the orogen. Y1 - 2020 U6 - https://doi.org/10.1029/2020TC006394 SN - 0278-7407 SN - 1944-9194 VL - 40 IS - 1 PB - American Geophysical Union CY - Washington, DC ER - TY - JOUR A1 - Kollmann, Peter A1 - Roussos, Elias A1 - Clark, George A1 - Cooper, John F. A1 - Sturner, Steven J. A1 - Kotova, Anna A1 - Regoli, Leonardo A1 - Shprits, Yuri A1 - Aseev, Nikita A1 - Krupp, Norbert T1 - Spectra of Saturn's proton belts revealed JF - Icarus N2 - Saturn is permanently surrounded by 6 discrete proton radiation belts that are rigidly separated by the orbits of its inner moons and dense rings. These radiation belts are ideal environments to study the details of radial diffusion and the CRAND source process, yet progress has been hindered by the fact that the energy spectra are not known with certainty: Reanalysis of the response functions of the LEMMS instrument on-board the Cassini orbiter has shown that measurements of less than or similar to 10 MeV protons may be easily contaminated by greater than or similar to 10 MeV protons and that many available measurements characterize a very broad energy range, so that the calculation of an energy-resolved spectrum is not as straightforward as previously assumed. Here we use forward modeling of the measurements based on the instrument response and combine this technique where useful with numerical modeling of the proton belt physics in order to determine Saturn's spectra with higher certainty. We find significant proton intensities up to approximate to 1 GeV. While earlier studies reported on proton spectra roughly following a power law with exponent approximate to -2, our more advanced analysis shows harder spectra with exponent approximate to -1. The observed spectra provide independent confirmation that Saturn's proton belts are sourced by CRAND and are consistent with the provided protons being subsequently cooled in the tenuous gas originating from Saturn or Enceladus. The intensities at Saturn are found to be lower than at Jupiter and Earth, which is also consistent with the source of Saturn being exclusively CRAND, while the other planets can draw from additional processes. Our new spectra can be used in the future to further our understanding of Saturn's proton belts and the respective physical processes that occur at other magnetized planets in general. Also, the spectra have applications for several topics of planetary science, such as space weathering of Saturn's moons and rings, and can be useful to constrain properties of the main rings through their production of secondary particles. KW - Radiation belts KW - Saturn KW - CRAND KW - Proton Y1 - 2022 U6 - https://doi.org/10.1016/j.icarus.2021.114795 SN - 0019-1035 SN - 1090-2643 VL - 376 PB - Elsevier CY - San Diego ER -