TY - JOUR A1 - Hand, Ralf A1 - Grossmann, Anita A1 - Lauterbach, Daniel T1 - Endemics and their common congener plant species on an East Mediterranean island BT - a comparative functional trait approach JF - Plant ecology : an international journal N2 - Understanding evolution and ecology of endemic plants is of great importance for conservation of those rare and endangered species. Pairwise comparisons of plant functional traits could be an adequate method to get insights in evolutionary and ecological processes. We examined whether morphological traits representing competitive ability and habitat specificity differ between endemics and common plants. Therefore, we performed pairwise comparison analyses of 9 plant functional traits in 36 congeneric pairs of endemics and their common congeners on the East Mediterranean island of Cyprus, i.e., the first such study conducted on a Mediterranean island. We found that endemic species prefer higher elevations and more extreme habitats. Endemics were smaller and they had smaller flowers than their common congeners. Common species had higher chromosome numbers than endemic ones. Endemic and common species showed no significant differences in canopy height, inflorescence height, leaf length and width, and flowering period. Our study showed that the situation on a large oceanic island does not differ from results in mainland research areas. KW - Biodiversity hotspot KW - Mediterranean Basin KW - Cyprus KW - Endemism KW - Rare common comparison Y1 - 2017 U6 - https://doi.org/10.1007/s11258-016-0673-y SN - 1385-0237 SN - 1573-5052 VL - 218 SP - 139 EP - 150 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Lauterbach, Daniel A1 - Burkart, Michael A1 - Gemeinholzer, Birgit T1 - Rapid genetic differentiation between ex situ and their in situ source populations - an example of the endangered Silene otites (Caryophyllaceae) JF - Botanical journal of the Linnean Society N2 - Ex situ cultivation in botanic gardens could be one possibility to preserve plant species diversity and genetic variation. However, old ex situ populations are often sparsely documented. We were able to retrieve three different ex situ populations and their source in situ populations of the endangered plant species Silene otites after 20-36 years of isolation. Furthermore, three additional wild populations were included in the analysis. Population genetic diversity and differentiation were analysed using AFLP markers. Genetic variation in the ex situ populations was lower than the variation found in the in situ populations. Strong differentiation (F-ST = 0.21-0.36) between corresponding in situ and ex situ populations was observed. Bayesian clustering approach also showed a distinct genetic separation between in situ and ex situ populations. The high genetic differentiation and loss of genetic diversity during spatial and temporal isolation in the ex situ populations can be attributable to small population sizes and unconscious selection during cultivation. Therefore, adequate sampling prior to ex situ cultivation and large effective population sizes are important to preserve genetic diversity. Near-natural cultivation allowing for generation overlap and interspecific competition without artificial selection is recommended as being best for the maintenance of the genetic constitution. KW - AFLP KW - botanical garden KW - conservation genetics KW - founder effect KW - population size Y1 - 2012 U6 - https://doi.org/10.1111/j.1095-8339.2011.01185.x SN - 0024-4074 VL - 168 IS - 1 SP - 64 EP - 75 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lauterbach, Daniel A1 - Ristow, Michael A1 - Gemeinholzer, Birgit T1 - Population genetics and fitness in fragmented populations of the dioecious and endangered Silene otites (Caryophyllaceae) JF - Plant systematics and evolution N2 - Population fragmentation is often correlated with loss of genetic diversity and reduced fitness. Obligate out-crossing (dioecy) is expected to enhance genetic diversity, reduce genetic differentiation, and avoid inbreeding depression through frequent gene flow. However, in highly fragmented populations dioecy has only diminishing effects upon genetic structure as pollination limitations (e.g. flight distance of pollinators) most often restrict inter-population gene flow in insect pollinated species. In fragmented dry grasslands in northeastern Germany, we analysed genetic structure, fitness, and habitat quality of the endangered dioecious Silene otites (Caryophyllaceae). Using AFLP markers, a high level of differentiation among ten populations was found (F (st) = 0.36), while the intra-population genetic diversities (H (E) = 0.165-0.240) were similar as compared to hermaphroditic species. There was neither a correlation between geographic and genetic distance nor between genetic diversity and population size, which indicates reduced gene flow among populations and random genetic drift. Plant size was positively correlated with genetic diversity. Seed set and number of juveniles were positively related to population size. Higher total coverage resulted in reduced plant fitness, and the number of juveniles was negatively correlated to cryptogam cover. Additionally, we found a sex ratio bias towards more male plants in larger populations. Overall, our results indicate that on a regional geographic scale dioecy does not necessarily prevent genetic erosion in the case of habitat fragmentation, especially in the absence of long distance seed and pollen dispersal capacity. KW - AFLP KW - Population size KW - Mating system KW - Isolation by distance KW - Sex ratio Y1 - 2012 U6 - https://doi.org/10.1007/s00606-011-0533-0 SN - 0378-2697 VL - 298 IS - 1 SP - 155 EP - 164 PB - Springer CY - Wien ER - TY - GEN A1 - Müller, Christina M. A1 - Schulz, Benjamin A1 - Lauterbach, Daniel A1 - Ristow, Michael A1 - Wissemann, Volker A1 - Gemeinholzer, Birgit T1 - Geropogon hybridus (L.) Sch.Bip. (Asteraceae) exhibits micro-geographic genetic divergence at ecological range limits along a steep precipitation gradient T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We analyzed the population genetic pattern of 12 fragmented Geropogon hybridus ecological range edge populations in Israel along a steep precipitation gradient. In the investigation area (45 x 20 km(2)), the annual mean precipitation changes rapidly from 450 mm in the north (Mediterranean-influenced climate zone) to 300 mm in the south (semiarid climate zone) without significant temperature changes. Our analysis (91 individuals, 12 populations, 123 polymorphic loci) revealed strongly structured populations (AMOVA I broken vertical bar(ST) = 0.35; P < 0.001); however, differentiation did not change gradually toward range edge. IBD was significant (Mantel test r = 0.81; P = 0.001) and derived from sharply divided groups between the northernmost populations and the others further south, due to dispersal or environmental limitations. This was corroborated by the PCA and STRUCTURE analyses. IBD and IBE were significant despite the micro-geographic scale of the study area, which indicates that reduced precipitation toward range edge leads to population genetic divergence. However, this pattern diminished when the hypothesized gene flow barrier was taken into account. Applying the spatial analysis method revealed 11 outlier loci that were correlated to annual precipitation and, moreover, were indicative for putative precipitation-related adaptation (BAYESCAN, MCHEZA). The results suggest that even on micro-geographic scales, environmental factors play prominent roles in population divergence, genetic drift, and directional selection. The pattern is typical for strong environmental gradients, e.g., at species range edges and ecological limits, and if gene flow barriers and mosaic-like structures of fragmented habitats hamper dispersal. KW - environmental association studies KW - fragmented habitats KW - isolation by distance (IBD) KW - isolation by environment (IBE) KW - range edge populations Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427061 SN - 1866-8372 IS - 832 ER -