TY - JOUR A1 - Kwamen, C. A1 - Rössle, Matthias A1 - Reinhardt, M. A1 - Leitenberger, Wolfram A1 - Zamponi, Flavio A1 - Alexe, Marin A1 - Bargheer, Matias T1 - Simultaneous dynamic characterization of charge and structural motion during ferroelectric switching JF - Physical review : B, Condensed matter and materials physics N2 - Monitoring structural changes in ferroelectric thin films during electric field induced polarization switching is important for a full microscopic understanding of the coupled motion of charges, atoms, and domainwalls in ferroelectric nanostructures. We combine standard ferroelectric test sequences of switching and nonswitching electrical pulses with time-resolved x-ray diffraction to investigate the structural response of a nanoscale Pb(Zr0.2Ti0.8)O-3 ferroelectric oxide capacitor upon charging, discharging, and polarization reversal. We observe that a nonlinear piezoelectric response of the ferroelectric layer develops on a much longer time scale than the RC time constant of the device. The complex atomic motion during the ferroelectric polarization reversal starts with a contraction of the lattice, whereas the expansive piezoelectric response sets in after considerable charge flow due to the applied voltage pulses on the electrodes of the capacitor. Our simultaneous measurements on a working device elucidate and visualize the complex interplay of charge flow and structural motion and challenges theoretical modeling. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.134105 SN - 2469-9950 SN - 2469-9969 VL - 96 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sander, Mathias A1 - Koc, A. A1 - Kwamen, C. T. A1 - Michaels, H. A1 - Reppert, Alexander von A1 - Pudell, Jan-Etienne A1 - Zamponi, Flavio A1 - Bargheer, Matias A1 - Sellmann, J. A1 - Schwarzkopf, J. A1 - Gaal, P. T1 - Characterization of an ultrafast Bragg-Switch for shortening hard x-ray pulses JF - Journal of applied physics N2 - We present a nanostructured device that functions as photoacoustic hard x-ray switch. The device is triggered by femtosecond laser pulses and allows for temporal gating of hard x-rays on picosecond (ps) timescales. It may be used for pulse picking or even pulse shortening in 3rd generation synchrotron sources. Previous approaches mainly suffered from insufficient switching contrasts due to excitation-induced thermal distortions. We present a new approach where thermal distortions are spatially separated from the functional switching layers in the structure. Our measurements yield a switching contrast of 14, which is sufficient for efficient hard x-ray pulse shortening. The optimized structure also allows for utilizing the switch at high repetition rates of up to 208 kHz. Published by AIP Publishing. Y1 - 2016 U6 - https://doi.org/10.1063/1.4967835 SN - 0021-8979 SN - 1089-7550 VL - 120 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Iurchuk, V. A1 - Schick, D. A1 - Bran, J. A1 - Colson, D. A1 - Forget, A. A1 - Halley, D. A1 - Koc, Azize A1 - Reinhardt, Mathias A1 - Kwamen, C. A1 - Morley, N. A. A1 - Bargheer, Matias A1 - Viret, M. A1 - Gumeniuk, R. A1 - Schmerber, G. A1 - Doudin, B. A1 - Kundys, B. T1 - Optical Writing of Magnetic Properties by Remanent Photostriction JF - Physical review letters N2 - We present an optically induced remanent photostriction in BiFeO3, resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO3/Ni structure. The 75% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO3. Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevLett.117.107403 SN - 0031-9007 SN - 1079-7114 VL - 117 PB - American Physical Society CY - College Park ER -