TY - JOUR A1 - Mettler, Tabea A1 - Mühlhaus, Timo A1 - Hemme, Dorothea A1 - Schöttler, Mark Aurel A1 - Rupprecht, Jens A1 - Idoine, Adam A1 - Veyel, Daniel A1 - Pal, Sunil Kumar A1 - Yaneva-Roder, Liliya A1 - Winck, Flavia Vischi A1 - Sommer, Frederik A1 - Vosloh, Daniel A1 - Seiwert, Bettina A1 - Erban, Alexander A1 - Burgos, Asdrubal A1 - Arvidsson, Samuel Janne A1 - Schoenfelder, Stephanie A1 - Arnold, Anne A1 - Guenther, Manuela A1 - Krause, Ursula A1 - Lohse, Marc A1 - Kopka, Joachim A1 - Nikoloski, Zoran A1 - Müller-Röber, Bernd A1 - Willmitzer, Lothar A1 - Bock, Ralph A1 - Schroda, Michael A1 - Stitt, Mark T1 - Systems analysis of the response of photosynthesis, metabolism, and growth to an increase in irradiance in the photosynthetic model organism chlamydomonas reinhardtii JF - The plant cell N2 - We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R-2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance. Y1 - 2014 U6 - https://doi.org/10.1105/tpc.114.124537 SN - 1040-4651 SN - 1532-298X VL - 26 IS - 6 SP - 2310 EP - 2350 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Martins, Marina Camara Mattos A1 - Hejazi, Mahdi A1 - Fettke, Jörg A1 - Steup, Martin A1 - Feil, Regina A1 - Krause, Ursula A1 - Arrivault, Stephanie A1 - Vosloh, Daniel A1 - Figueroa, Carlos Maria A1 - Ivakov, Alexander A1 - Yadav, Umesh Prasad A1 - Piques, Maria A1 - Metzner, Daniela A1 - Stitt, Mark A1 - Lunn, John Edward T1 - Feedback inhibition of starch degradation in arabidopsis leaves mediated by trehalose 6-phosphate JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by beta-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 mu M in the cytosol, 0.2 to 0.5 mu M in the chloroplasts, and 0.05 mu M in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night. Y1 - 2013 U6 - https://doi.org/10.1104/pp.113.226787 SN - 0032-0889 SN - 1532-2548 VL - 163 IS - 3 SP - 1142 EP - 1163 PB - American Society of Plant Physiologists CY - Rockville ER -