TY - JOUR A1 - Löpfe, Moira A1 - Duss, Anja A1 - Zafeiropoulou, Katerina-Alexandra A1 - Bjoergvinsdottir, Oddny A1 - Eglin, David A1 - Fortunato, Giuseppino A1 - Klasen, Jürgen A1 - Ferguson, Stephen J. A1 - Würtz-Kozak, Karin A1 - Krupkova, Olga T1 - Electrospray-Based Microencapsulation of Epigallocatechin 3-Gallate for Local Delivery into the Intervertebral Disc JF - Pharmaceutics N2 - Locally delivered anti-inflammatory compounds can restore the homeostasis of the degenerated intervertebral disc (IVD). With beneficial effects on IVD cells, epigallocatechin 3-gallate (EGCG) is a promising therapeutic candidate. However, EGCG is prone to rapid degradation and/or depletion. Therefore, the purpose of this study was to develop a method for controlled EGCG delivery in the degenerated IVD. Primary IVD cells were isolated from human donors undergoing IVD surgeries. EGCG was encapsulated into microparticles by electrospraying of glutaraldehyde-crosslinked gelatin. The resulting particles were characterized in terms of cytocompatibility and anti-inflammatory activity, and combined with a thermoresponsive carrier to produce an injectable EGCG delivery system. Subsequently, electrospraying was scaled up using the industrial NANOSPIDER (TM) technology. The produced EGCG microparticles reduced the expression of inflammatory (IL-6, IL-8, COX-2) and catabolic (MMP1, MMP3, MMP13) mediators in pro-inflammatory 3D cell cultures. Combining the EGCG microparticles with the carrier showed a trend towards modulating EGCG activity/release. Electrospray upscaling was achieved, leading to particles with homogenous spherical morphologies. In conclusion, electrospray-based encapsulation of EGCG resulted in cytocompatible microparticles that preserved the activity of EGCG and showed the potential to control EGCG release, thus favoring IVD health by downregulating local inflammation. Future studies will focus on further exploring the biological activity of the developed delivery system for potential clinical use. KW - degenerative disc disease KW - inflammation KW - drug delivery KW - EGCG KW - microparticles KW - injectable biomaterial KW - electrospraying Y1 - 2019 U6 - https://doi.org/10.3390/pharmaceutics11090435 SN - 1999-4923 VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - GEN A1 - Krupkova, Olga A1 - Sadowska, Aleksandra A1 - Kameda, Takuya A1 - Hitzl, Wolfgang A1 - Hausmann, Oliver Nic A1 - Klasen, Jürgen A1 - Wuertz-Kozak, Karin T1 - p38 MaPK facilitates crosstalk between endoplasmic reticulum stress and IL-6 release in the intervertebral Disc T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1 beta, and TNF-alpha was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1 beta and TNF-alpha. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 mu M) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-alpha (5 and 10 ng/mL) did not activate ER stress, while IL-1 beta (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+](i) flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 705 KW - intervertebral disc KW - inflammation KW - endoplasmic reticulum stress KW - p38 MAPK KW - CHOP KW - GADD153 KW - GRP78 KW - IL-6 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468698 SN - 1866-8364 IS - 705 ER - TY - JOUR A1 - Krupkova, Olga A1 - Sadowska, Aleksandra A1 - Kameda, Takuya A1 - Hitzl, Wolfgang A1 - Hausmann, Oliver Nic A1 - Klasen, Jürgen A1 - Wuertz-Kozak, Karin T1 - p38 MaPK Facilitates crosstalk Between endoplasmic reticulum stress and IL-6 release in the intervertebral Disc JF - Frontiers in Immunology N2 - Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1 beta, and TNF-alpha was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1 beta and TNF-alpha. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 mu M) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-alpha (5 and 10 ng/mL) did not activate ER stress, while IL-1 beta (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+](i) flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD. KW - intervertebral disc KW - inflammation KW - endoplasmic reticulum stress KW - p38 MAPK KW - CHOP KW - GADD153 KW - GRP78 KW - IL-6 Y1 - 2018 U6 - https://doi.org/10.3389/fimmu.2018.01706 SN - 1664-3224 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER -