TY - JOUR A1 - Zhang, Xiaorong A1 - Yarman, Aysu A1 - Erdossy, Julia A1 - Katz, Sagie A1 - Zebger, Ingo A1 - Jetzschmann, Katharina J. A1 - Altintas, Zeynep A1 - Wollenberger, Ulla A1 - Gyurcsanyi, Robert E. A1 - Scheller, Frieder W. T1 - Electrosynthesized MIPs for transferrin BT - Plastibodies or nano-filters? JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics N2 - Molecularly imprinted polymer (MP) nanofilrns for transferrin (Trf) have been synthesized on gold surfaces by electro-polymerizing the functional monomer scopoletin in the presence of the protein target or around pre-adsorbed Trf. As determined by atomic force microscopy (AFM) the film thickness was comparable with the molecular dimension of the target. The target (re)binding properties of the electro-synthesized MIP films was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) through the target-binding induced permeability changes of the MIP nanofilms to the ferricyanide redox marker, as well as by surface plasmon resonance (SPR) and surface enhanced infrared absorption spectroscopy (SEIRAS) of the immobilized protein molecules. For Trf a linear concentration dependence in the lower micromolar range and an imprinting factor of similar to 5 was obtained by SWV and SPR. Furthermore, non-target proteins including the iron-free apo-Trf were discriminated by pronounced size and shape specificity. Whilst it is generally assumed that the rebinding of the target or of cross-reacting proteins exclusively takes place at the polymer here we considered also the interaction of the protein molecules with the underlying gold transducers. We demonstrate by SWV that adsorption of proteins suppresses the signal of the redox marker even at the bare gold surface and by SEIRAS that the treatment of the MIP with proteinase K or NaOH only partially removes the target protein. Therefore, we conclude that when interpreting binding of proteins to directly MIP-covered gold electrodes the interactions between the protein and the gold surface should also be considered. KW - Molecularly imprinted polymer KW - Scopoletin KW - Transferrin KW - Protein adsorption KW - Redox marker Y1 - 2018 U6 - https://doi.org/10.1016/j.bios.2018.01.011 SN - 0956-5663 SN - 1873-4235 VL - 105 SP - 29 EP - 35 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kielb, Patrycja A1 - Sezer, Murat A1 - Katz, Sagie A1 - Lopez, Francesca A1 - Schulz, Christopher A1 - Gorton, Lo A1 - Ludwig, Roland A1 - Wollenberger, Ursula A1 - Zebger, Ingo A1 - Weidinger, Inez M. T1 - Spectroscopic Observation of Calcium-Induced Reorientation of Cellobiose Dehydrogenase Immobilized on Electrodes and its Effect on Electrocatalytic Activity JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Cellobiose dehydrogenase catalyzes the oxidation of various carbohydrates and is considered as a possible anode catalyst in biofuel cells. It has been shown that the catalytic performance of this enzyme immobilized on electrodes can be increased by presence of calcium ions. To get insight into the Ca2+-induced changes in the immobilized enzyme we employ surface-enhanced vibrational (SERR and SEIRA) spectroscopy together with electrochemistry. Upon addition of Ca2+ ions electrochemical measurements show a shift of the catalytic turnover signal to more negative potentials while SERR measurements reveal an offset between the potential of heme reduction and catalytic current. Comparing SERR and SEIRA data we propose that binding of Ca2+ to the heme induces protein reorientation in a way that the electron transfer pathway of the catalytic FAD center to the electrode can bypass the heme cofactor, resulting in catalytic activity at more negative potentials. KW - cellobiose dehydrogenase KW - electron transfer KW - enzyme catalysis KW - spectroelectrochemistry KW - surface-enhanced vibrational spectroscopy Y1 - 2015 U6 - https://doi.org/10.1002/cphc.201500112 SN - 1439-4235 SN - 1439-7641 VL - 16 IS - 9 SP - 1960 EP - 1968 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Laun, Konstantin A1 - Duffus, Benjamin R. A1 - Wahlefeld, Stefan A1 - Katz, Sagie A1 - Belger, Dennis Heinz A1 - Hildebrandt, Peter A1 - Mroginski, Maria Andrea A1 - Leimkühler, Silke A1 - Zebger, Ingo T1 - Infrared spectroscopy flucidates the inhibitor binding sites in a metal-dependent formate dehydrogenase JF - Chemistry - a European journal N2 - Biological carbon dioxide (CO2) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587. KW - CO2 reduction KW - DFT KW - formate oxidation KW - inhibition kinetics KW - IR KW - spectroscopy KW - molybdoenzyme Y1 - 2022 U6 - https://doi.org/10.1002/chem.202201091 SN - 0947-6539 SN - 1521-3765 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tadjoung Waffo, Armel Franklin A1 - Yesildag, Cigdem A1 - Caserta, Giorgio A1 - Katz, Sagie A1 - Zebger, Ingo A1 - Lensen, Marga C. A1 - Wollenberger, Ulla A1 - Scheller, Frieder W. A1 - Altintas, Zeynep T1 - Fully electrochemical MIP sensor for artemisinin JF - Sensors and actuators : B, Chemical N2 - This study aims to develop a rapid, sensitive and cost-effective biomimetic electrochemical sensor for artemisinin determination in plant extracts and for pharmacokinetic studies. A novel molecularly imprinted polymer (MIP)based electrochemical sensor was developed by electropolymerization of o-phenylenediamine (o-PD) in the presence of artemisinin on gold wire surface for sensitive detection of artemisinin. The experimental parameters, including selection of functional monomer, polymerization conditions, template extraction after polymerization, influence of pH and buffer were all optimized. Every step of imprinted film synthesis were evaluated by employing voltammetry techniques, surface-enhanced infrared absorption spectroscopy (SEIRAS) and atomic force microscopy (AFM). The specificity was further evaluated by investigating non-specific artemisinin binding on non-imprinted polymer (NIP) surfaces and an imprinting factor of 6.8 was achieved. The artemisinin imprinted polymers using o-PD as functional monomer have provided highly stable and effective binding cavities for artemisinin. Cross-reactivity studies with drug molecules showed that the MIPs are highly specific for artemisinin. The influence of matrix effect was further investigated both in artificial plant matrix and diluted human serum. The results revealed a high affinity of artemisinin-MIP with dissociation constant of 7.3 x 10(-9) M and with a detection limit of 0.01 mu M and 0.02 mu M in buffer and plant matrix, respectively. KW - Electro-synthesized molecularly imprinted polymer KW - o-Phenylenediamine KW - Artemisinin KW - Antimalarial drug detection KW - Electrochemical sensor Y1 - 2018 U6 - https://doi.org/10.1016/j.snb.2018.08.018 SN - 0925-4005 VL - 275 SP - 163 EP - 173 PB - Elsevier CY - Lausanne ER -