TY - JOUR A1 - Schrön, Martin A1 - Oswald, Sascha A1 - Zacharias, Steffen A1 - Kasner, Mandy A1 - Dietrich, Peter A1 - Attinger, Sabine T1 - Neutrons on rails BT - Transregional monitoring of soil moisture and snow water equivalent JF - Geophysical research letters : GRL / American Geophysical Union N2 - Large-scale measurements of the spatial distribution of water content in soils and snow are challenging for state-of-the-art hydrogeophysical methods. Cosmic-ray neutron sensing (CRNS) is a noninvasive technology that has the potential to bridge the scale gap between conventional in situ sensors and remote sensing products in both, horizontal and vertical domains. In this study, we explore the feasibility and potential of estimating water content in soils and snow with neutron detectors in moving trains. Theoretical considerations quantify the stochastic measurement uncertainty as a function of water content, altitude, resolution, and detector efficiency. Numerical experiments demonstrate that the sensitivity of measured water content is almost unperturbed by train materials. Finally, three distinct real-world experiments provide a proof of concept on short and long-range tracks. With our results a transregional observational soil moisture product becomes a realistic vision within the next years. KW - soil moisture KW - transregional KW - multiscale KW - snow water equivalent KW - cosmic-ray neutron sensing KW - railway Y1 - 2021 U6 - https://doi.org/10.1029/2021GL093924 SN - 0094-8276 SN - 1944-8007 VL - 48 IS - 24 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Schrön, Martin A1 - Zacharias, Steffen A1 - Womack, Gary A1 - Köhli, Markus A1 - Desilets, Darin A1 - Oswald, Sascha A1 - Bumberger, Jan A1 - Mollenhauer, Hannes A1 - Kögler, Simon A1 - Remmler, Paul A1 - Kasner, Mandy A1 - Denk, Astrid A1 - Dietrich, Peter T1 - Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment JF - Geoscientific instrumentation, methods and data systems N2 - Sensor-to-sensor variability is a source of error common to all geoscientific instruments that needs to be assessed before comparative and applied research can be performed with multiple sensors. Consistency among sensor systems is especially critical when subtle features of the surrounding terrain are to be identified. Cosmic-ray neutron sensors (CRNSs) are a recent technology used to monitor hectometre-scale environmental water storages, for which a rigorous comparison study of numerous co-located sensors has not yet been performed. In this work, nine stationary CRNS probes of type "CRS1000" were installed in relative proximity on a grass patch surrounded by trees, buildings, and sealed areas. While the dynamics of the neutron count rates were found to be similar, offsets of a few percent from the absolute average neutron count rates were found. Technical adjustments of the individual detection parameters brought all instruments into good agreement. Furthermore, we found a critical integration time of 6 h above which all sensors showed consistent dynamics in the data and their RMSE fell below 1% of gravimetric water content. The residual differences between the nine signals indicated local effects of the complex urban terrain on the scale of several metres. Mobile CRNS measurements and spatial simulations with the URANOS neutron transport code in the surrounding area (25 ha) have revealed substantial sub-footprint heterogeneity to which CRNS detectors are sensitive despite their large averaging volume. The sealed and constantly dry structures in the footprint furthermore damped the dynamics of the CRNS-derived soil moisture. We developed strategies to correct for the sealed-area effect based on theoretical insights about the spatial sensitivity of the sensor. This procedure not only led to reliable soil moisture estimation during dry-out periods, it further revealed a strong signal of intercepted water that emerged over the sealed surfaces during rain events. The presented arrangement offered a unique opportunity to demonstrate the CRNS performance in complex terrain, and the results indicated great potential for further applications in urban climate research. Y1 - 2018 U6 - https://doi.org/10.5194/gi-7-83-2018 SN - 2193-0856 SN - 2193-0864 VL - 7 IS - 1 SP - 83 EP - 99 PB - Copernicus CY - Göttingen ER -