TY - JOUR A1 - Dong, Yang A1 - Jantzen, Friederike A1 - Stacey, Nicola A1 - Langowski, Lukasz A1 - Moubayidin, Laila A1 - Simura, Jan A1 - Ljung, Karin A1 - Ostergaard, Lars T1 - Regulatory Diversification of INDEHISCENT in the Capsella Genus Directs Variation in Fruit Morphology JF - Current biology N2 - Evolution of gene-regulatory sequences is considered the primary driver of morphological variation [1-3]. In animals, the diversity of body plans between distantly related phyla is due to the differential expression patterns of conserved "toolkit' genes [4]. In plants, variation in expression domains similarly underlie most of the reported diversity of organ shape both in natural evolution and in the domestication of crops [5-9]. The heart-shaped fruit from members of the Capsella genus is a morphological novelty that has evolved after Capsella diverged from Arabidopsis similar to 8 mya [10]. Comparative studies of fruit growth in Capsella and Arabidopsis revealed that the difference in shape is caused by local control of anisotropic growth [11]. Here, we show that sequence variation in regulatory domains of the fruit-tissue identity gene, INDEHISCENT (IND), is responsible for expansion of its expression domain in the heart-shaped fruits from Capsella rubella. We demonstrate that expression of this CrIND gene in the apical part of the valves in Capsella contributes to the heart-shaped appearance. While studies on morphological diversity have revealed the importance of cis-regulatory sequence evolution, few examples exist where the downstream effects of such variation have been characterized in detail. We describe here how CrIND exerts its function on Capsella fruit shape by binding sequence elements of auxin biosynthesis genes to activate their expression and ensure auxin accumulation into highly localized maxima in the fruit valves. Thus, our data provide a direct link between changes in expression pattern and altered hormone homeostasis in the evolution of morphological novelty. Y1 - 2019 U6 - https://doi.org/10.1016/j.cub.2019.01.057 SN - 0960-9822 SN - 1879-0445 VL - 29 IS - 6 SP - 1038 EP - 1046 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Poxson, David J. A1 - Karady, Michal A1 - Gabrielsson, Roger A1 - Alkattan, Aziz Y. A1 - Gustavsson, Anna A1 - Doyle, Siamsa M. A1 - Robert, Stephanie A1 - Ljung, Karin A1 - Grebe, Markus A1 - Simon, Daniel T. A1 - Berggren, Magnus T1 - Regulating plant physiology with organic electronics JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatio-temporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants. KW - auxin KW - Arabidopsis thaliana KW - dendritic polymer KW - bioelectronics KW - polyelectrolyte Y1 - 2017 U6 - https://doi.org/10.1073/pnas.1617758114 SN - 0027-8424 VL - 114 SP - 4597 EP - 4602 PB - National Acad. of Sciences CY - Washington ER -