TY - JOUR A1 - Schirmer, Annika A1 - Hoffmann, Julia A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - My niche BT - individual spatial niche specialization affects within- and between-species interactions JF - Proceedings of the Royal Society of London : B, Biological sciences N2 - Intraspecific trait variation is an important determinant of fundamental ecological interactions. Many of these interactions are mediated by behaviour. Therefore, interindividual differences in behaviour should contribute to individual niche specialization. Comparable with variation in morphological traits, behavioural differentiation between individuals should limit similarity among competitors and thus act as a mechanism maintaining within-species variation in ecological niches and facilitating species coexistence. Here, we aimed to test whether interindividual differences in boldness covary with spatial interactions within and between two ecologically similar, co-occurring rodent species (Myodes glareolus, Apodemus agrarius). In five subpopulations in northeast Germany, we quantified individual differences in boldness via repeated standardized tests and spatial interaction patterns via capture-mark- recapture (n = 126) and automated VHF telemetry (n = 36). We found that boldness varied with space use in both species. Individuals of the same population occupied different spatial niches, which resulted in non-random patterns of within- and between-species spatial interactions. Behavioural types mainly differed in the relative importance of intra- versus interspecific competition. Within-species variation along this competition gradient could contribute to maintaining individual niche specialization. Moreover, behavioural differentiation between individuals limits similarity among competitors, which might facilitate the coexistence of functionally equivalent species and, thus, affect community dynamics and local biodiversity. KW - animal personality KW - competition KW - individual niche specialization KW - movement ecology KW - coexistence KW - small mammals Y1 - 2020 U6 - https://doi.org/10.1098/rspb.2019.2211 SN - 0962-8452 SN - 1471-2954 VL - 287 IS - 1918 PB - Royal Society CY - London ER - TY - JOUR A1 - Hoffmann, Julia A1 - Hölker, Franz A1 - Eccard, Jana T1 - Welcome to the dark side BT - partial nighttime illumination affects night-and daytime foraging behavior of a small mammal JF - Frontiers in ecology and evolution N2 - Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics. KW - light pollution KW - inter-individual differences KW - animal personality KW - Myodes glareolus KW - ALAN Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2021.779825 SN - 2296-701X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Eccard, Jana A1 - Scheffler, Ingo A1 - Franke, Steffen A1 - Hoffmann, Julia T1 - Off-grid BT - solar powered LED illumination impacts epigeal arthropods JF - Insect conservation and diversity N2 - 1. Advances in LED technology combined with solar, storable energy bring light to places remote from electricity grids. Worldwide more than 1.3 billion of people are living off-grid, often in developing regions of high insect biodiversity. In developed countries, dark refuges for wildlife are threatened by ornamental garden lights. Solar powered LEDs (SPLEDs) are cheaply available, dim, and often used to illuminate foot paths, but little is known on their effects on ground living (epigeal) arthropods. 2. We used off-the-shelf garden lamps with a single ‘white’ LED (colour temperature 7250 K) to experimentally investigate effects on attraction and nocturnal activity of ground beetles (Carabidae). 3. We found two disparate and species-specific effects of SPLEDs. (i) Some nocturnal, phototactic species were not reducing activity under illumination and were strongly attracted to lamps (>20-fold increase in captures compared to dark controls). Such species aggregate in lit areas and SPLEDs may become ecological traps, while the species is drawn from nearby, unlit assemblages. (ii) Other nocturnal species were reducing mobility and activity under illumination without being attracted to light, which may cause fitness reduction in lit areas. 4. Both reactions offer mechanistic explanations on how outdoor illumination can change population densities of specific predatory arthropods, which may have cascading effects on epigeal arthropod assemblages. The technology may thus increase the area of artificial light at night (ALAN) impacting insect biodiversity. 5. Measures are needed to mitigate effects, such as adjustment of light colour temperature and automated switch-offs. KW - Artificial light at night (ALAN) KW - Carabidae KW - illuminance KW - light pollution KW - light spectrum KW - nocturnal epigeal insect KW - phototaxis KW - solar powered light-emitting diode KW - spectral irradiance KW - white light Y1 - 2018 U6 - https://doi.org/10.1111/icad.12303 SN - 1752-458X SN - 1752-4598 VL - 11 IS - 6 SP - 600 EP - 607 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Hoffmann, Julia A1 - Hölker, Franz A1 - Eccard, Jana T1 - Welcome to the Dark Side BT - Partial Nighttime Illumination Affects Night-and Daytime Foraging Behavior of a Small Mammal T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1231 KW - light pollution KW - inter-individual differences KW - animal personality KW - Myodes glareolus KW - ALAN Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-544702 SN - 1866-8372 ER - TY - JOUR A1 - Hoffmann, Julia A1 - Schirmer, Annika A1 - Eccard, Jana T1 - Light pollution affects space use and interaction of two small mammal species irrespective of personality JF - BMC Ecology N2 - Background: Artificial light at night (ALAN) is one form of human-induced rapid environmental changes (HIREC) and is strongly interfering with natural dark–light cycles. Some personality types within a species might be better suited to cope with environmental change and therefore might be selected upon under ongoing urbanization. Results: We used LED street lamps in a large outdoor enclosure to experimentally investigate the effects of ALAN on activity patterns, movement and interaction of individuals of two species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius). We analyzed effects combined with individual boldness score. Both species reduced their activity budget during daylight hours. While under natural light conditions home ranges were larger during daylight than during nighttime, this difference vanished under ALAN. Conspecifics showed reduced home range overlap, proximity and activity synchrony when subjected to nighttime illumination. Changes in movement patterns in reaction to ALAN were not associated with differences in boldness score of individuals. Conclusions: Our results suggest that light pollution can lead to changes in movement patterns and individual interactions in small mammals. This could lead to fitness consequences on the population level. KW - Nighttime illumination KW - Rodents KW - Outdoor enclosure KW - Animal personality KW - Interspecific interactions KW - HIREC Y1 - 2019 U6 - https://doi.org/10.1186/s12898-019-0241-0 SN - 1472-6785 VL - 19 PB - BioMed Central CY - London ER - TY - JOUR A1 - Hoffmann, Julia A1 - Hölker, Franz A1 - Eccard, Jana T1 - Welcome to the Dark Side BT - Partial Nighttime Illumination Affects Night-and Daytime Foraging Behavior of a Small Mammal JF - Frontiers in Ecology and Evolution N2 - Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics. KW - light pollution KW - inter-individual differences KW - animal personality KW - Myodes glareolus KW - ALAN Y1 - 2021 U6 - https://doi.org/10.3389/fevo.2021.779825 SN - 2296-701X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Hoffmann, Christin A1 - Hoppe, Julia Amelie A1 - Ziemann, Niklas T1 - The hare and the hedgehog BT - empirical evidence on the relationship between the individual Pace of Life and the speed-accuracy continuum JF - PLoS one N2 - Against the background of the speed-accuracy trade-off, we explored whether the Pace of Life can be used to identify heterogeneity in the strategy to place more weight on either fast or accurate accomplishments. The Pace of Life approaches an individual's exposure to time and is an intensively studied concept in the evolutionary biology research. Albeit overall rarely, it is increasingly used to understand human behavior and may fulfill many criteria of a personal trait. In a controlled laboratory environment, we measured the participants' Pace of Life, as well as their performance on a real-effort task. In the real-effort task, the participants had to encode words, whereby each word encoded correctly was associated with a monetary reward. We found that individuals with a faster Pace of Life accomplished more tasks in total. At the same time, they were less accurate and made more mistakes (in absolute terms) than those with a slower Pace of Life. Thus, the Pace of Life seems to be useful to identify an individual's stance on the speed-accuracy continuum. In our specific task, placing more weight on speed instead of accuracy paid off: Individuals with a faster Pace of Life were ultimately more successful (with regard to their monetary revenue). Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0256490 SN - 1932-6203 VL - 16 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Hoffmann, Christin A1 - Hoppe, Julia Amelie A1 - Ziemann, Niklas T1 - Faster, harder, greener? BT - empirical evidence on the role of the individual Pace of Life for productivity and pro-environmental behavior JF - Ecological economics N2 - Against the background of the current "Speed-Up Society," which seems to foster a trade-off between economic success and climate change, we study whether the individual Pace of Life is associated with productivity and proenvironmental behavior on the micro-level. In a controlled laboratory environment with students in Germany, we measured the productivity of participants in a real effort task, quantified their pro-environmental behavior, and recorded their individual Pace of Life. We find that individuals with a fast Pace of Life are significantly more productive. However, individuals with a fast Pace of Life behave less pro-environmentally if they are men and more pro-environmentally if they are women. KW - Charitable giving KW - Limits of growth KW - Pace of Life KW - Pro-environmental KW - behavior KW - Speed-Up Society Y1 - 2021 U6 - https://doi.org/10.1016/j.ecolecon.2021.107212 SN - 0921-8009 VL - 191 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hoffmann, Julia A1 - Palme, Rupert A1 - Eccard, Jana T1 - Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations JF - Environmental pollution N2 - Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radio telemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions. (C) 2018 Elsevier Ltd. All rights reserved. KW - Myodes glareolus KW - Light pollution KW - Chronic stress KW - Survival success KW - Artificial light KW - LED Y1 - 2018 U6 - https://doi.org/10.1016/j.envpol.2018.03.107 SN - 0269-7491 SN - 1873-6424 VL - 238 SP - 844 EP - 851 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Hoffmann, Julia A1 - Schirmer, Annika A1 - Eccard, Jana T1 - Light pollution affects space use and interaction of two small mammal species irrespective of personality T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Artificial light at night (ALAN) is one form of human-induced rapid environmental changes (HIREC) and is strongly interfering with natural dark–light cycles. Some personality types within a species might be better suited to cope with environmental change and therefore might be selected upon under ongoing urbanization. Results: We used LED street lamps in a large outdoor enclosure to experimentally investigate the effects of ALAN on activity patterns, movement and interaction of individuals of two species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius). We analyzed effects combined with individual boldness score. Both species reduced their activity budget during daylight hours. While under natural light conditions home ranges were larger during daylight than during nighttime, this difference vanished under ALAN. Conspecifics showed reduced home range overlap, proximity and activity synchrony when subjected to nighttime illumination. Changes in movement patterns in reaction to ALAN were not associated with differences in boldness score of individuals. Conclusions: Our results suggest that light pollution can lead to changes in movement patterns and individual interactions in small mammals. This could lead to fitness consequences on the population level. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 749 KW - Nighttime illumination KW - Rodents KW - Outdoor enclosure KW - Animal personality KW - Interspecific interactions KW - HIREC Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436307 SN - 1866-8372 IS - 749 ER -