TY - JOUR A1 - Peres, Tanara Vieira A1 - Arantes, Leticia P. A1 - Miah, Mahfuzur R. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Bowman, Aaron B. A1 - Leal, Rodrigo B. A1 - Aschner, Michael T1 - Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity JF - Neurotoxicity Research N2 - Excessive levels of the essential metal manganese (Mn) may cause a syndrome similar to Parkinson’s disease. The model organism Caenorhabditis elegans mimics some of Mn effects in mammals, including dopaminergic neurodegeneration, oxidative stress, and increased levels of AKT. The evolutionarily conserved insulin/insulin-like growth factor-1 signaling pathway (IIS) modulates worm longevity, metabolism, and antioxidant responses by antagonizing the transcription factors DAF-16/FOXO and SKN-1/Nrf-2. AKT-1, AKT-2, and SGK-1 act upstream of these transcription factors. To study the role of these proteins in C. elegans response to Mn intoxication, wild-type N2 and loss-of-function mutants were exposed to Mn (2.5 to 100 mM) for 1 h at the L1 larval stage. Strains with loss-of-function in akt-1, akt-2, and sgk-1 had higher resistance to Mn compared to N2 in the survival test. All strains tested accumulated Mn similarly, as shown by ICP-MS. DAF-16 nuclear translocation was observed by fluorescence microscopy in WT and loss-of-function strains exposed to Mn. qRT-PCR data indicate increased expression of γ-glutamyl cysteine synthetase (GCS-1) antioxidant enzyme in akt-1 mutants. The expression of sod-3 (superoxide dismutase homologue) was increased in the akt-1 mutant worms, independent of Mn treatment. However, dopaminergic neurons degenerated even in the more resistant strains. Dopaminergic function was evaluated with the basal slowing response behavioral test and dopaminergic neuron integrity was evaluated using worms expressing green fluorescent protein (GFP) under the dopamine transporter (DAT-1) promoter. These results suggest that AKT-1/2 and SGK-1 play a role in C. elegans response to Mn intoxication. However, tissue-specific responses may occur in dopaminergic neurons, contributing to degeneration. KW - Manganese . C. elegans KW - Signaling pathways KW - DAF-16 KW - Akt/PKB KW - SGK-1 Y1 - 2018 U6 - https://doi.org/10.1007/s12640-018-9915-1 SN - 1029-8428 SN - 1476-3524 VL - 34 IS - 3 SP - 584 EP - 596 PB - Springer CY - New York ER - TY - JOUR A1 - Rund, Katharina M. A1 - Heylmann, Daniel A1 - Seiwert, Nina A1 - Wecklein, Sabine A1 - Oger, Camille A1 - Galano, Jean-Marie A1 - Durand, Thierry A1 - Chen, Rongjun A1 - Güler, Faikah A1 - Fahrer, Jörg A1 - Bornhorst, Julia A1 - Schebb, Nils Helge T1 - Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress JF - Prostaglandins & Other Lipid Mediators N2 - In mammals, epoxy-polyunsaturated fatty acids (epoxy-PUFA) are enzymatically formed from naturally occurring all-cis PUFA by cytochrome P450 monooxygenases leading to the generation of cis-epoxy-PUFA (mixture of R,S- and S,R-enantiomers). In addition, also non-enzymatic chemical peroxidation gives rise to epoxy-PUFA leading to both, cis- and trans-epoxy-PUFA (mixture of R,R- and S,S-enantiomers). Here, we investigated for the first time trans-epoxy-PUFA and the trans/cis-epoxy-PUFA ratio as potential new biomarker of lipid peroxidation. Their formation was analyzed in correlation with the formation of isoprostanes (IsoP), which are commonly used as biomarkers of oxidative stress. Five oxidative stress models were investigated including incubations of three human cell lines as well as the in vivo model Caenorhabditis elegans with tert-butyl hydroperoxide (t-BOOH) and analysis of murine kidney tissue after renal ischemia reperfusion injury (IRI). A comprehensive set of IsoP and epoxy-PUFA derived from biologically relevant PUFA (ARA, EPA and DHA) was simultaneously quantified by LC-ESI(-)-MS/MS. Following renal IRI only a moderate increase in the kidney levels of IsoP and no relevant change in the trans/cis-epoxy-PUFA ratio was observed. In all investigated cell lines (HCT-116, HepG2 and Caki-2) as well as C. elegans a dose dependent increase of both, IsoP and the trans/cis-epoxy-PUFA ratio in response to the applied t-BOOH was observed. The different cell lines showed a distinct time dependent pattern consistent for both classes of autoxidatively formed oxylipins. Clear and highly significant correlations of the trans/cisepoxy-PUFA ratios with the IsoP levels were found in all investigated cell lines and C. elegans. Based on this, we suggest the trans/cis-epoxy-PUFA ratio as potential new biomarker of oxidative stress, which warrants further investigation. KW - Isoprostane KW - Trans-epoxy-fatty acid KW - Oxidative stress KW - Biomarker KW - Oxylipin KW - Eicosanoid Y1 - 2019 U6 - https://doi.org/10.1016/j.prostaglandins.2019.04.004 SN - 1098-8823 SN - 2212-196X VL - 144 PB - Elsevier CY - New York ER - TY - JOUR A1 - Strehlau, Jenny A1 - Weber, Till A1 - Luerenbaum, Constantin A1 - Bornhorst, Julia A1 - Galla, Hans-Joachim A1 - Schwerdtle, Tanja A1 - Winter, Martin A1 - Nowak, Sascha T1 - Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place. KW - Liquid-liquid extraction KW - GC-MS KW - Lithiumion battery (LIB) KW - Organic carbonates KW - Cell culture materials Y1 - 2017 U6 - https://doi.org/10.1007/s00216-017-0549-6 SN - 1618-2642 SN - 1618-2650 VL - 409 SP - 6123 EP - 6131 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Rohn, Isabelle A1 - Kroepfl, Nina A1 - Aschner, Michael A1 - Bornhorst, Julia A1 - Kuehnelt, Doris A1 - Schwerdtle, Tanja T1 - Selenoneine ameliorates peroxide-induced oxidative stress in C. elegans JF - Journal of trace elements in medicine and biology N2 - Scope: Selenoneine (2-selenyl-N-alpha, N-alpha, N-alpha-trimethyl-L-histidine), the selenium (Se) analogue of the ubiquitous thiol compound and putative antioxidant ergothioneine, is the major organic selenium species in several marine fish species. Although its antioxidant efficacy has been proposed, selenoneine has been poorly characterized, preventing conclusions on its possible beneficial health effects. Methods and results: Treatment of Caenorhabditis elegans (C. elegans) with selenoneine for 18 h attenuated the induction of reactive oxygen and nitrogen species (RONS). However, the effect was not immediate, occurring 48 h post-treatment. Total Se and Se speciation analysis revealed that selenoneine was efficiently taken up and present in its original form directly after treatment, with no metabolic transformations observed. 48 h posttreatment, total Se in worms was slightly higher compared to controls and no selenoneine could be detected. Conclusion: The protective effect of selenoneine may not be attributed to the presence of the compound itself, but rather to the activation of molecular mechanisms with consequences at more protracted time points. KW - Selenoneine KW - Caenorhabditis elegans KW - Selenium KW - Oxidative stress Y1 - 2019 U6 - https://doi.org/10.1016/j.jtemb.2019.05.012 SN - 0946-672X VL - 55 SP - 78 EP - 81 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Jacques, Mauricio Tavares A1 - Bornhorst, Julia A1 - Soares, Marcell Valandro A1 - Schwerdtle, Tanja A1 - Garcia, Solange A1 - Avila, Daiana Silva T1 - Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only JF - Environmental pollution N2 - Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bio-accumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels. (C) 2019 Elsevier Ltd. All rights reserved. KW - Glyphosate KW - Inert ingredients KW - Reproduction KW - Oocytes KW - Development KW - Metals Y1 - 2019 U6 - https://doi.org/10.1016/j.envpol.2019.06.099 SN - 0269-7491 SN - 1873-6424 VL - 252 SP - 1854 EP - 1862 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Ruszkiewicz, Joanna A. A1 - de Macedo, Gabriel Teixeira A1 - Miranda-Vizuete, Antonio A1 - Teixeira da Rocha, Joao B. A1 - Bowman, Aaron B. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael T1 - The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans. KW - Methylmercury KW - Age KW - Development KW - C. elegans KW - Thioredoxin KW - Thioredoxin reductase Y1 - 2018 U6 - https://doi.org/10.1016/j.neuro.2018.08.007 SN - 0161-813X SN - 1872-9711 VL - 68 SP - 189 EP - 202 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Müller, Sandra Marie A1 - Ebert, Franziska A1 - Raber, Georg A1 - Meyer, Sören A1 - Bornhorst, Julia A1 - Hüwel, Stephan A1 - Galla, Hans-Joachim A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Effects of arsenolipids on in vitro blood-brain barrier model JF - Archives of toxicology : official journal of EUROTOX N2 - Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids (AsLs) occurring in fish and edible algae, possess a substantial neurotoxic potential in fully differentiated human brain cells. Previous in vivo studies indicating that AsHCs cross the blood–brain barrier of the fruit fly Drosophila melanogaster raised the question whether AsLs could also cross the vertebrate blood–brain barrier (BBB). In the present study, we investigated the impact of several representatives of AsLs (AsHC 332, AsHC 360, AsHC 444, and two arsenic-containing fatty acids, AsFA 362 and AsFA 388) as well as of their metabolites (thio/oxo-dimethylpropionic acid, dimethylarsinic acid) on porcine brain capillary endothelial cells (PBCECs, in vitro model for the blood–brain barrier). AsHCs exerted the strongest cytotoxic effects of all investigated arsenicals as they were up to fivefold more potent than the toxic reference species arsenite (iAsIII). In our in vitro BBB-model, we observed a slight transfer of AsHC 332 across the BBB after 6 h at concentrations that do not affect the barrier integrity. Furthermore, incubation with AsHCs for 72 h led to a disruption of the barrier at sub-cytotoxic concentrations. The subsequent immunocytochemical staining of three tight junction proteins revealed a significant impact on the cell membrane. Because AsHCs enhance the permeability of the in vitro blood–brain barrier, a similar behavior in an in vivo system cannot be excluded. Consequently, AsHCs might facilitate the transfer of accompanying foodborne toxicants into the brain. KW - Arsenolipids KW - Arsenic-containing hydrocarbons KW - Arsenic-containing fatty acids KW - In vitro blood-brain barrier model Y1 - 2017 SN - 0340-5761 SN - 1432-0738 VL - 92 IS - 2 SP - 823 EP - 832 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Honnen, S. A1 - Wellenberg, Anna A1 - Weides, L. A1 - Bornhorst, Julia A1 - Crone, B. A1 - Karst, U. A1 - Fritz, G. T1 - Identification of potent drug candidates for the prevention of cisplatin-induced neurotoxicity in the model organism C. elegans T2 - Naunyn-Schmiedeberg's archives of pharmacology Y1 - 2018 UR - https://link.springer.com/content/pdf/10.1007/s00210-018-1477-5.pdf U6 - https://doi.org/10.1007/s00210-018-1477-5 SN - 0028-1298 SN - 1432-1912 VL - 391 SP - S4 EP - S4 PB - Springer CY - New York ER - TY - JOUR A1 - Nowotny, Kerstin A1 - Castro, Jose Pedro A1 - Hugo, Martin A1 - Braune, Sabine A1 - Weber, Daniela A1 - Pignitter, Marc A1 - Somoza, Veronika A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Grune, Tilman T1 - Oxidants produced by methylglyoxal-modified collagen trigger ER stress and apoptosis in skin fibroblasts JF - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research N2 - Methylglyoxal (MG), a highly reactive dicarbonyl, interacts with proteins to form advanced glycation end products (AGEs). AGEs include a variety of compounds which were shown to have damaging potential and to accumulate in the course of different conditions such as diabetes mellitus and aging. After confirming collagen as a main target for MG modifications in vivo within the extracellular matrix, we show here that MG-collagen disrupts fibroblast redox homeostasis and induces endoplasmic reticulum (ER) stress and apoptosis. In particular, MG-collagen-induced apoptosis is associated with the activation of the PERK-eIF2 alpha pathway and caspase-12. MG-collagen contributes to altered redox homeostasis by directly generating hydrogen peroxide and oxygen-derived free radicals. The induction of ER stress in human fibroblasts was confirmed using collagen extracts isolated from old mice in which MG-derived AGEs were enriched. In conclusion, MG-derived AGEs represent one factor contributing to diminished fibroblast function during aging. KW - Advanced glycation end products KW - Aging KW - Apoptosis KW - Collagen KW - ER stress KW - Methylglyoxal KW - Redox homeostasis Y1 - 2018 U6 - https://doi.org/10.1016/j.freeradbiomed.2018.03.022 SN - 0891-5849 SN - 1873-4596 VL - 120 SP - 102 EP - 113 PB - Elsevier CY - New York ER - TY - GEN A1 - Kumar, Kevin K. A1 - Goodwin, Cody R. A1 - Uhouse, Michael A. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - McLean, John A. A1 - Bowman, Aaron B. T1 - Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status N2 - Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 232 KW - cells KW - coenzyme-a KW - database KW - energy-metabolism KW - glutathione KW - hallervorden-spatz-syndrome KW - mobility-mass spectrometry KW - model KW - neurodegeneration KW - neurotoxicity Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94314 SP - 363 EP - 370 ER - TY - JOUR A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Höseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Bürkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes BT - genotoxicity and DNA-damage response JF - Metallomics N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co-genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl)ation contributes to organic Hg induced neurotoxicity. KW - cell-death KW - poly(ADP-ribose) polymerase-1 KW - neurodegenerative diseases KW - adduct formation KW - thimerosal KW - methylmercury KW - repair KW - neurotoxicity KW - manganese KW - exposure Y1 - 2014 U6 - https://doi.org/10.1039/c3mt00337j SN - 1756-591X SN - 1756-5901 VL - 2014 IS - 6 SP - 662 EP - 671 ER - TY - GEN A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Höseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Bürkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes BT - genotoxicity and DNA-damage response N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 171 KW - adduct formation KW - cell-death KW - exposure KW - manganese KW - methylmercury KW - neurodegenerative diseases KW - neurotoxicity KW - poly(ADP-ribose) polymerase-1 KW - repair KW - thimerosal Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74379 SP - 662 EP - 671 ER - TY - JOUR A1 - Crone, Barbara A1 - Aschner, Michael A. A1 - Schwerdtle, Tanja A1 - Karst, Uwe A1 - Bornhorst, Julia T1 - Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS JF - Metallomics N2 - cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 μm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose)metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable. Y1 - 2015 U6 - https://doi.org/10.1039/c5mt00096c SN - 1756-591X SN - 1756-5901 VL - 2015 IS - 7 SP - 1189 EP - 1195 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Crone, Barbara A1 - Aschner, Michael A. A1 - Schwerdtle, Tanja A1 - Karst, Uwe A1 - Bornhorst, Julia T1 - Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS N2 - cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 μm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose)metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 192 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-80031 SP - 1189 EP - 1195 ER - TY - JOUR A1 - Henze, Andrea A1 - Homann, Thomas A1 - Rohn, Isabelle A1 - Aschner, Michael A. A1 - Link, Christopher D. A1 - Kleuser, Burkhard A1 - Schweigert, Florian J. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin JF - Scientific reports N2 - The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization – time of flight – mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling. KW - n-acetyl-cysteine KW - s-glutathionylation KW - force-field KW - c. elegans KW - life-span KW - protein KW - cells KW - menadione KW - disease KW - binding Y1 - 2016 U6 - https://doi.org/10.1038/srep37346 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - GEN A1 - Henze, Andrea A1 - Homann, Thomas A1 - Rohn, Isabelle A1 - Aschner, Michael A. A1 - Link, Christopher D. A1 - Kleuser, Burkhard A1 - Schweigert, Florian J. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin N2 - The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization – time of flight – mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 312 KW - binding KW - c. elegans KW - cells KW - disease KW - force-field KW - life-span KW - menadione KW - n-acetyl-cysteine KW - protein KW - s-glutathionylation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103674 ER - TY - GEN A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Neely, M. Diana A1 - Avila, Daiana Silva T1 - Mechanisms and disease pathogenesis underlying metal-induced oxidative stress T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1045 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-467869 SN - 1866-8372 IS - 1045 ER - TY - JOUR A1 - Bornhorst, Julia A1 - Kipp, Anna P. A1 - Haase, Hajo A1 - Meyer, Soeren A1 - Schwerdtle, Tanja T1 - The crux of inept biomarkers for risks and benefits of trace elements JF - Trends in Analytical Chemistry N2 - Nowadays, the role of trace elements (TE) is of growing interest because dyshomeostasis of selenium (Se), manganese (Mn), zinc (Zn), and copper (Cu) is supposed to be a risk factor for several diseases. Thereby, research focuses on identifying new biomarkers for the TE status to allow for a more reliable description of the individual TE and health status. This review mirrors a lack of well-defined, sensitive, and selective biomarkers and summarizes technical limitations to measure them. Thus, the capacity to assess the relationship between dietary TE intake, homeostasis, and health is restricted, which would otherwise provide the basis to define adequate intake levels of single TE in both healthy and diseased humans. Besides that, our knowledge is even more limited with respect to the real life situation of combined TE intake and putative interactions between single TE. KW - Trace elements KW - Copper KW - Zinc KW - Manganese KW - Selenium KW - Biomarker KW - Inductively coupled plasma mass spectrometry KW - Hyphenated techniques KW - Isotope ratios Y1 - 2018 U6 - https://doi.org/10.1016/j.trac.2017.11.007 SN - 0165-9936 SN - 1879-3142 VL - 104 SP - 183 EP - 190 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Rohn, Isabelle A1 - Kroepfl, Nina A1 - Bornhorst, Julia A1 - Kühnelt, Doris A1 - Schwerdtle, Tanja T1 - Side-directed transfer and presystemic metabolism of selenoneine in a human intestinal barrier model JF - Molecular nutrition & food research : bioactivity, chemistry, immunology, microbiology, safety, technology N2 - Scope: Selenoneine, a recently discovered selenium (Se) species mainly present in marine fish, is the Se analogue of ergothioneine, a sulfur-containing purported antioxidant. Although similar properties have been proposed for selenoneine, data on its relevance to human health are yet scarce. Here, the transfer and presystemic metabolism of selenoneine in an in vitro model of the human intestinal barrier are investigated. Methods and results: Selenoneine and the reference species Se-methylselenocysteine (MeSeCys) and selenite are applied to the Caco-2 intestinal barrier model. Selenoneine is transferred in higher amounts, but with similar kinetics as selenite, while MeSeCys shows the highest permeability. In contrast to the reference species, transfer of selenoneine is directed toward the blood side. Cellular Se contents demonstrate that selenoneine is efficiently taken up by Caco-2 cells. Moreover, HPLC/MS-based Se speciation studies reveal a partial metabolism to Se-methylselenoneine, a metabolite previously detected in human blood and urine. Conclusions: Selenoneine is likely to pass the intestinal barrier via transcellular, carrier-mediated transport, is highly bioavailable to Caco-2 cells and undergoes metabolic transformations. Therefore, further studies are needed to elucidate its possible health effects and to characterize the metabolism of selenoneine in humans. KW - bioavailability KW - Caco-2 intestinal barrier model KW - presystemic metabolism KW - selenoneine KW - Se-methylselenoneine Y1 - 2019 U6 - https://doi.org/10.1002/mnfr.201900080 SN - 1613-4125 SN - 1613-4133 VL - 63 IS - 12 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Müller, Sandra Marie A1 - Ebert, Franziska A1 - Bornhorst, Julia A1 - Galla, Hans-Joachim A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons disrupt a model in vitro blood-cerebrospinal fluid barrier JF - Journal of trace elements in medicine and biology N2 - Lipid-soluble arsenicals, so-called arsenolipids, have gained a lot of attention in the last few years because of their presence in many seafoods and reports showing substantial cytotoxicity emanating from arsenic-containing hydrocarbons (AsHCs), a prominent subgroup of the arsenolipids. More recent in vivo and in vitro studies indicate that some arsenolipids might have adverse effects on brain health. In the present study, we focused on the effects of selected arsenolipids and three representative metabolites on the blood-cerebrospinal fluid barrier (B-CSF-B), a brain-regulating interface. For this purpose, we incubated an in vitro model of the B-CSF-B composed of porcine choroid plexus epithelial cells (PCPECs) with three AsHCs, two arsenic-containing fatty acids (AsFAs) and three representative arsenolipid metabolites (dimethylarsinic acid, thio/oxo-dimethylpropanoic acid) to examine their cytotoxic potential and impact on barrier integrity. The toxic arsenic species arsenite was also tested in this way and served as a reference substance. While AsFAs and the metabolites showed no cytotoxic effects in the conducted assays, AsHCs showed a strong cytotoxicity, being up to 1.5-fold more cytotoxic than arsenite. Analysis of the in vitro B-CSF-B integrity showed a concentration dependent disruption of the barrier within 72 h. The correlation with the decreased plasma membrane surface area (measured as capacitance) indicates cytotoxic effects. These findings suggest exposure to elevated levels of certain arsenolipids may have detrimental consequences for the central nervous system. KW - Arsenolipids KW - Blood-liquor barrier KW - Blood-cerebrospinal fluid barrier KW - Arsenic-containing hydrocarbons KW - Arsenic-containing fatty acids Y1 - 2018 U6 - https://doi.org/10.1016/j.jtemb.2018.01.020 SN - 0946-672X VL - 49 SP - 171 EP - 177 PB - Elsevier GMBH CY - München ER - TY - GEN A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Neely, M. Diana A1 - Avila, Daiana Silva T1 - Mechanisms and Disease Pathogenesis Underlying Metal-Induced Oxidative Stress T2 - Oxidative Medicine and Cellular Longevity Y1 - 2018 U6 - https://doi.org/10.1155/2018/7612172 SN - 1942-0900 SN - 1942-0994 PB - Hindawi CY - London ER - TY - JOUR A1 - Marschall, Talke Anu A1 - Kroepfl, Nina A1 - Jensen, Kenneth Bendix A1 - Bornhorst, Julia A1 - Meermann, B. A1 - Kühnelt, Doris A1 - Schwerdtle, Tanja T1 - Tracing cytotoxic effects of small organic Se species in human liver cells back to total cellular Se and Se metabolites JF - Metallomics N2 - Small selenium (Se) species play a major role in the metabolism, excretion and dietary supply of the essential trace element selenium. Human cells provide a valuable tool for investigating currently unresolved issues on the cellular mechanisms of Se toxicity and metabolism. In this study, we developed two isotope dilution inductively coupled plasma tandem-mass spectrometry based methods and applied them to human hepatoma cells (HepG2) in order to quantitatively elucidate total cellular Se concentrations and cellular Se species transformations in relation to the cytotoxic effects of four small organic Se species. Species-and incubation time-dependent results were obtained: the two major urinary excretion metabolites trimethylselenonium (TMSe) and methyl-2-acetamido-2-deoxy-1-seleno-beta- D-galactopyranoside (SeSugar 1) were taken up by the HepG2 cells in an unmodified manner and did not considerably contribute to the Se pool. In contrast, Se-methylselenocysteine (MeSeCys) and selenomethionine (SeMet) were taken up in higher amounts, they were largely incorporated by the cells (most likely into proteins) and metabolized to other small Se species. Two new metabolites of MeSeCys, namely gamma-glutamyl-Se-methylselenocysteine and Se-methylselenoglutathione, were identified by means of HPLC-electrospray-ionization-Orbitrap-MS. They are certainly involved in the (de-) toxification modes of Se metabolism and require further investigation. Y1 - 2017 U6 - https://doi.org/10.1039/c6mt00300a SN - 1756-5901 SN - 1756-591X VL - 9 SP - 268 EP - 277 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Bornhorst, Julia A1 - Nustede, Eike Jannik A1 - Fudickar, Sebastian T1 - Mass Surveilance of C. elegans-Smartphone-Based DIY Microscope and Machine-Learning-Based Approach for Worm Detection JF - Sensors N2 - The nematode Caenorhabditis elegans (C. elegans) is often used as an alternative animal model due to several advantages such as morphological changes that can be seen directly under a microscope. Limitations of the model include the usage of expensive and cumbersome microscopes, and restrictions of the comprehensive use of C. elegans for toxicological trials. With the general applicability of the detection of C. elegans from microscope images via machine learning, as well as of smartphone-based microscopes, this article investigates the suitability of smartphone-based microscopy to detect C. elegans in a complete Petri dish. Thereby, the article introduces a smartphone-based microscope (including optics, lighting, and housing) for monitoring C. elegans and the corresponding classification via a trained Histogram of Oriented Gradients (HOG) feature-based Support Vector Machine for the automatic detection of C. elegans. Evaluation showed classification sensitivity of 0.90 and specificity of 0.85, and thereby confirms the general practicability of the chosen approach. KW - Caenorhabditis elegans KW - machine learning KW - smartphone KW - microscope KW - SVM KW - HOG Y1 - 2019 U6 - https://doi.org/10.3390/s19061468 SN - 1424-8220 VL - 19 IS - 6 PB - MDPI CY - Basel ER - TY - GEN A1 - Wellenberg, Anna A1 - Weides, L. A1 - Bornhorst, Julia A1 - Crone, Barbara A1 - Karst, U. A1 - Fritz, G. A1 - Honnen, S. T1 - Molecular and electrophysiological analysis of platinum-induced neurotoxicity using the model organism C. elegans T2 - Naunyn-Schmiedeberg's archives of pharmacology Y1 - 2019 UR - https://link.springer.com/content/pdf/10.1007%2Fs00210-019-01621-6.pdf U6 - https://doi.org/10.1007/s00210-019-01621-6 SN - 0028-1298 SN - 1432-1912 VL - 392 SP - S63 EP - S63 PB - Springer CY - New York ER - TY - JOUR A1 - Ruszkiewicz, Joanna A. A1 - de Macedo, Gabriel Teixeira A1 - Miranda-Vizuete, Antonio A1 - Bowman, Aaron B. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Antunes Soares, Felix A. A1 - Aschner, Michael T1 - Sex-Specific response of caenorhabditis elegans to Methylmercury Toxicity JF - Neurotoxicity Research N2 - Methylmercury (MeHg), an abundant environmental pollutant, has long been known to adversely affect neurodevelopment in both animals and humans. Several reports from epidemiological studies, as well as experimental data indicate sex-specific susceptibility to this neurotoxicant; however, the molecular bases of this process are still not clear. In the present study, we used Caenorhabditis elegans (C. elegans), to investigate sex differences in response to MeHg toxicity during development. Worms at different developmental stage (L1, L4, and adult) were treated with MeHg for 1h. Lethality assays revealed that male worms exhibited significantly higher resistance to MeHg than hermaphrodites, when at L4 stage or adults. However, the number of worms with degenerated neurons was unaffected by MeHg, both in males and hermaphrodites. Lower susceptibility of males was not related to changes in mercury (Hg) accumulation, which was analogous for both wild-type (wt) and male-rich him-8 strain. Total glutathione (GSH) levels decreased upon MeHg in him-8, but not in wt. Moreover, the sex-dependent response of the cytoplasmic thioredoxin system was observedmales exhibited significantly higher expression of thioredoxin TRX-1, and thioredoxin reductase TRXR-1 expression was downregulated upon MeHg treatment only in hermaphrodites. These outcomes indicate that the redox status is an important contributor to sex-specific sensitivity to MeHg in C. elegans. KW - Methylmercury KW - Sex KW - Male KW - C KW - elegans KW - Antioxidant KW - Thioredoxin Y1 - 2019 U6 - https://doi.org/10.1007/s12640-018-9949-4 SN - 1029-8428 SN - 1476-3524 VL - 35 IS - 1 SP - 208 EP - 216 PB - Springer CY - New York ER - TY - JOUR A1 - Peres, Tanara V. A1 - Horning, Kyle J. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Bowman, Aaron B. A1 - Aschner, Michael T1 - Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo JF - Biological Trace Element Research N2 - Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric disturbances and may arise from an impaired or not fully developed excretion system, transporter malfunction and/or exposure to excessive levels of Mn. Therefore, deciphering processes regulating neuronal Mn homeostasis is essential to understand the mechanisms of Mn neurotoxicity. In the present study, we selected two small molecules (with opposing effects on Mn transport) from a previous high throughput screen of 40,167 to test their effects on Mn toxicity parameters in vivo using Caenorhabditis elegans. We pre-exposed worms to VU0063088 and VU0026921 for 30min followed by co-exposure for 1h with Mn and evaluated Mn accumulation, dopaminergic (DAergic) degeneration and worm survival. Control worms were exposed to vehicle (DMSO) and saline only. In pdat-1::GFP worms, with GFP labeled DAergic neurons, we observed a decrease of Mn-induced DAergic degeneration in the presence of both small molecules. This effect was also observed in an smf-2 knockout strain. SMF-2 is a regulator of Mn transport in the worms and this strain accumulates higher Mn levels. We did not observe improved survival in the presence of small molecules. Our results suggest that both VU0063088 and VU0026921 may modulate Mn levels in the worms through a mechanism that does not require SMF-2 and induce protection against Mn neurotoxicity. KW - Small molecules KW - Manganese KW - Neurotoxicity KW - C. elegans KW - Dopamine Y1 - 2018 U6 - https://doi.org/10.1007/s12011-018-1531-7 SN - 0163-4984 SN - 1559-0720 VL - 188 IS - 1 SP - 127 EP - 134 PB - Human press inc. CY - Totowa ER - TY - JOUR A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Hoeseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Buerkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response JF - Metallomics : integrated biometal science N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity. Y1 - 2014 U6 - https://doi.org/10.1039/c3mt00337j SN - 1756-5901 SN - 1756-591X VL - 6 IS - 3 SP - 662 EP - 671 PB - Royal Society of Chemistry CY - Cambridge ER - TY - CHAP A1 - Tidball, Andrew M. A1 - Kumar, Kevin K. A1 - Bryan, Miles R. A1 - Bichell, Terry Jo A1 - Horning, Kyle A1 - Uhouse, Michael A. A1 - Goodwin, Cody R. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Neely, Maja Diana A1 - McClean, John A. A1 - Aschner, Michael A. A1 - Bowman, Aaron B. T1 - Deficits in neural responses to manganese exposure in Huntington's disease models T2 - Neurotoxicology and teratology Y1 - 2015 U6 - https://doi.org/10.1016/j.ntt.2015.04.022 SN - 0892-0362 SN - 1872-9738 VL - 49 SP - 105 EP - 105 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Peres, Tanara V. A1 - Eyng, Helena A1 - Lopes, Samantha C. A1 - Colle, Dirleise A1 - Goncalves, Filipe M. A1 - Venske, Debora K. R. A1 - Lopes, Mark W. A1 - Ben, Juliana A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - Farina, Marcelo A1 - Prediger, Rui D. A1 - Leal, Rodrigo B. T1 - Developmental exposure to manganese induces lasting motor and cognitive impairment in rats JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum. (C) 2015 Elsevier Inc. All rights reserved. KW - Manganese KW - Neurotoxicity KW - Development KW - Motor coordination KW - Cognition Y1 - 2015 U6 - https://doi.org/10.1016/j.neuro.2015.07.005 SN - 0161-813X SN - 1872-9711 VL - 50 SP - 28 EP - 37 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Avila, Daiana Silva A1 - Benedetto, Alexandre A1 - Au, Catherine A1 - Bornhorst, Julia A1 - Aschner, Michael A. T1 - Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans T2 - BMC pharmacology and toxicology N2 - Background: All living cells display a rapid molecular response to adverse environmental conditions, and the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock protein ( hsp ) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity. Methods: We exposed wild type and selected hsp mutant worms to Mn (30 min) and next evaluated further the most susceptible strains. We analyzed survi val, protein carbonylation (as a marker of oxidative stress) and Parkinson ’ s disease related gene expression immediately after Mn exposure. Lastly, we observed dopaminergic neurons in wild type worms and in hsp-70 mutants following Mn treatment. Analysis of the data was performed by one-way or two way ANOVA, depending on the case, followed by post-hoc Bonferroni test if the overall p value was less than 0.05. Results: We verified that the loss of hsp-70, hsp-3 and chn-1 increased the vulnerability to Mn, as exposed mutant worms showed lower survival rate and increased protein oxidation. The importance of hsp-70 against Mn toxicity was then corroborated in dopaminergic neurons, where Mn neurotoxicity was aggravated. The lack of hsp-70 also blocked the transcriptional upregulation of pink1 , a gene that has been linked to Parkinson ’ sdisease. Conclusions: Taken together, our data suggest that Mn exposu re modulates heat shock protein expression, particularly HSP-70, in C. elegans .Furthermore,lossof hsp-70 increases protein oxidation and dopaminergic neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1 increased expression, thus pot entially exacerbating the v ulnerability to this metal. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 439 KW - Caenorhabitis elegans KW - Manganese KW - heat shock proteins KW - hsp-70 KW - pink1 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407286 ER - TY - JOUR A1 - Gubert, Priscila A1 - Puntel, Bruna A1 - Lehmen, Tassia A1 - Bornhorst, Julia A1 - Avila, Daiana Silva A1 - Aschner, Michael A. A1 - Soares, Felix A. A. T1 - Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans JF - Life sciences : molecular, cellular and functional basis of therapy N2 - Aims Vitellogenesis is the yolk production process which provides the essential nutrients for the developing embryos. Yolk is a lipoprotein particle that presents lipids and lipid-binding proteins, referred to as vitellogenins (VIT). The Caenorhabditis elegans nematode has six genes encoding VIT lipoproteins. Several pathways are known to regulate vitellogenesis, including the DAF-16 transcription factor. Some reports have shown that heavy metals, such as manganese (Mn), impair brood size in C. elegans; however the mechanisms associated with this effect have yet to be identified. Our aim was to evaluate Mn′s effects on C. elegans reproduction and better understand the pathways related to these effects. Main methods. Young adult larval stage worms were treated for 4 h with Mn in 85 mM NaCl and Escherichia coli OP50 medium. Key findings. Mn reduced egg-production and egg-laying during the first 24 h after the treatment, although the total number of progenies were indistinguishable from the control group levels. This delay may have occurred due to DAF-16 activation, which was noted only after the treatment and was not apparent 24 h later. Moreover, the expression, protein levels and green fluorescent protein (GFP) fluorescence associated with VIT were decreased soon after Mn treatment and recovered after 24 h. Significance Combined, these data suggest that the delay in egg-production is likely regulated by DAF-16 and followed by the inhibition of VIT transport activity. Further studies are needed to clarify the mechanisms associated with Mn-induced DAF-16 activation. KW - Manganese KW - Vitellogenin KW - Caenorhabditis elegans KW - DAF-16 transcription factor KW - Brood size Y1 - 2016 U6 - https://doi.org/10.1016/j.lfs.2016.03.016 SN - 0024-3205 SN - 1879-0631 VL - 151 SP - 218 EP - 223 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Lohren, Hanna A1 - Bornhorst, Julia A1 - Fitkau, Romy A1 - Pohl, Gabriele A1 - Galla, Hans-Joachim A1 - Schwerdtle, Tanja T1 - Effects on and transfer across the blood-brain barrier in vitro-Comparison of organic and inorganic mercury species JF - BMC pharmacology & toxicology N2 - Background: Transport of methylmercury (MeHg) across the blood-brain barrier towards the brain side is well discussed in literature, while ethylmercury (EtHg) and inorganic mercury are not adequately characterized regarding their entry into the brain. Studies investigating a possible efflux out of the brain are not described to our knowledge. Methods: This study compares, for the first time, effects of organic methylmercury chloride (MeHgCl), EtHg-containing thiomersal and inorganic Hg chloride (HgCl2) on as well as their transfer across a primary porcine in vitro model of the blood-brain barrier. Results: With respect to the barrier integrity, the barrier model exhibited a much higher sensitivity towards HgCl2 following basolateral incubation (brain-facing side) as compared to apical application (blood-facing side). These HgCl2 induced effects on the barrier integrity after brain side incubation are comparable to that of the organic species, although MeHgCl and thiomersal exerted much higher cytotoxic effects in the barrier building cells. Hg transfer rates following exposure to organic species in both directions argue for diffusion as transfer mechanism. Inorganic Hg application surprisingly resulted in a Hg transfer out of the brain-facing compartment. Conclusions: In case of MeHgCl and thiomersal incubation, mercury crossed the barrier in both directions, with a slight accumulation in the basolateral, brain-facing compartment, after simultaneous incubation in both compartments. For HgCl2, our data provide first evidence that the blood-brain barrier transfers mercury out of the brain. KW - Organic mercury KW - Inorganic mercury KW - Methylmercury KW - Thiomersal KW - Mercuric mercury KW - In vitro blood-brain barrier model Y1 - 2016 U6 - https://doi.org/10.1186/s40360-016-0106-5 SN - 2050-6511 VL - 17 SP - 422 EP - 433 PB - BioMed Central CY - London ER - TY - JOUR A1 - Marschall, Talke Anu A1 - Bornhorst, Julia A1 - Kuehnelt, Doris A1 - Schwerdtle, Tanja T1 - Differing cytotoxicity and bioavailability of selenite, methylselenocysteine, selenomethionine, selenosugar 1 and trimethylselenonium ion and their underlying metabolic transformations in human cells JF - Applied computing review : the publication of the ACM Special Interest Group on Applied Computing N2 - Scope: The trace element selenium (Se) is an integral component of our diet. However, its metabolism and toxicity following elevated uptake are not fully understood. Since the either adverse or beneficial health effects strongly depend on the ingested Se species, five low molecular weight species were investigated regarding their toxicological effects, cellular bioavailability and species-specific metabolism in human cells. Methods and results: For the first time, the urinary metabolites methyl-2-acetamido-2-deoxy1- seleno-beta-D-galactopyranoside (selenosugar 1) and trimethylselenonium ion (TMSe) were toxicologically characterised in comparison to the food relevant species methylselenocysteine (MeSeCys), selenomethionine (SeMet) and selenite in human urothelial, astrocytoma and hepatoma cells. In all cell lines selenosugar 1 and TMSe showed no cytotoxicity. Selenite, MeSeCys and SeMet exerted substantial cytotoxicity, which was strongest in the urothelial cells. There was no correlation between the potencies of the respective toxic effects and the measured cellular Se concentrations. Se speciation indicated that metabolism of the respective species is likely to affect cellular toxicity. Conclusion: Despite being taken up, selenosugar 1 and TMSe are non-cytotoxic to urothelial cells, most likely because they are not metabolically activated. The absent cytotoxicity of selenosugar 1 and TMSe up to supra-physiological concentrations, support their importance as metabolites for Se detoxification. KW - Cellular bioavailability KW - ICP-QQQ-MS KW - Selenosugar 1 KW - Small selenium species KW - Speciation Y1 - 2016 U6 - https://doi.org/10.1002/mnfr.201600422 SN - 1613-4125 SN - 1613-4133 VL - 60 SP - 2622 EP - 2632 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Henze, Andrea A1 - Homann, Thomas A1 - Rohn, Isabelle A1 - Aschner, Michael A. A1 - Link, Christopher D. A1 - Kleuser, Burkhard A1 - Schweigert, Florian J. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin JF - Scientific reports N2 - The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time-and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling. Y1 - 2016 U6 - https://doi.org/10.1038/srep37346 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Avila, Daiana Silva A1 - Benedetto, Alexandre A1 - Au, Catherine A1 - Bornhorst, Julia A1 - Aschner, Michael A. T1 - Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans JF - Plant Methods N2 - Background: All living cells display a rapid molecular response to adverse environmental conditions, and the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock protein (hsp) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity. Conclusions: Taken together, our data suggest that Mn exposure modulates heat shock protein expression, particularly HSP-70, in C. elegans. Furthermore, loss of hsp-70 increases protein oxidation and dopaminergic neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1 increased expression, thus potentially exacerbating the vulnerability to this metal. KW - Caenorhabitis elegans KW - Manganese KW - Heat shock proteins KW - hsp-70 KW - pink1 Y1 - 2016 U6 - https://doi.org/10.1186/s40360-016-0097-2 SN - 2050-6511 VL - 17 PB - BioMed Central CY - London ER - TY - JOUR A1 - Lohren, Hanna A1 - Bornhorst, Julia A1 - Galla, Hans-Joachim A1 - Schwerdtle, Tanja T1 - The blood–cerebrospinal fluid barrier BT - First evidence for an active transport of organic mercury compounds out of the brain JF - Metallomics : integrated biometal science N2 - Exposure to organic mercury compounds promotes primarily neurological effects. Although methylmercury is recognized as a potent neurotoxicant, its transfer into the central nervous system (CNS) is not fully evaluated. While methylmercury and thiomersal pass the blood–brain barrier, limited data are available regarding the second brain regulating interface, the blood–cerebrospinal fluid (CSF) barrier. This novel study was designed to investigate the effects of organic as well as inorganic mercury compounds on, and their transfer across, a porcine in vitro model of the blood–CSF barrier for the first time. The barrier system is significantly more sensitive towards organic Hg compounds as compared to inorganic compounds regarding the endpoints cytotoxicity and barrier integrity. Whereas there are low transfer rates from the blood side to the CSF side, our results strongly indicate an active transfer of the organic mercury compounds out of the CSF. These results are the first to demonstrate an efflux of organic mercury compounds regarding the CNS and provide a completely new approach in the understanding of mercury compounds specific transport. Y1 - 2015 U6 - https://doi.org/10.1039/C5MT00171D SN - 1756-5901 SN - 1756-591X VL - 10 IS - 7 SP - 1420 EP - 1430 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Lohren, Hanna A1 - Bornhorst, Julia A1 - Galla, Hans-Joachim A1 - Schwerdtle, Tanja T1 - The blood–cerebrospinal fluid barrier BT - First evidence for an active transport of organic mercury compounds out of the brain N2 - Exposure to organic mercury compounds promotes primarily neurological effects. Although methylmercury is recognized as a potent neurotoxicant, its transfer into the central nervous system (CNS) is not fully evaluated. While methylmercury and thiomersal pass the blood–brain barrier, limited data are available regarding the second brain regulating interface, the blood–cerebrospinal fluid (CSF) barrier. This novel study was designed to investigate the effects of organic as well as inorganic mercury compounds on, and their transfer across, a porcine in vitro model of the blood–CSF barrier for the first time. The barrier system is significantly more sensitive towards organic Hg compounds as compared to inorganic compounds regarding the endpoints cytotoxicity and barrier integrity. Whereas there are low transfer rates from the blood side to the CSF side, our results strongly indicate an active transfer of the organic mercury compounds out of the CSF. These results are the first to demonstrate an efflux of organic mercury compounds regarding the CNS and provide a completely new approach in the understanding of mercury compounds specific transport. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 200 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82089 ER - TY - JOUR A1 - Lohren, Hanna A1 - Bornhorst, Julia A1 - Galla, Hans-Joachim A1 - Schwerdtle, Tanja T1 - The blood-cerebrospinal fluid barrier - first evidence for an active transport of organic mercury compounds out of the brain JF - Metallomics : integrated biometal science N2 - Exposure to organic mercury compounds promotes primarily neurological effects. Although methylmercury is recognized as a potent neurotoxicant, its transfer into the central nervous system (CNS) is not fully evaluated. While methylmercury and thiomersal pass the blood-brain barrier, limited data are available regarding the second brain regulating interface, the blood-cerebrospinal fluid (CSF) barrier. This novel study was designed to investigate the effects of organic as well as inorganic mercury compounds on, and their transfer across, a porcine in vitro model of the blood-CSF barrier for the first time. The barrier system is significantly more sensitive towards organic Hg compounds as compared to inorganic compounds regarding the endpoints cytotoxicity and barrier integrity. Whereas there are low transfer rates from the blood side to the CSF side, our results strongly indicate an active transfer of the organic mercury compounds out of the CSF. These results are the first to demonstrate an efflux of organic mercury compounds regarding the CNS and provide a completely new approach in the understanding of mercury compounds specific transport. Y1 - 2015 U6 - https://doi.org/10.1039/c5mt00171d SN - 1756-5901 SN - 1756-591X VL - 7 IS - 10 SP - 1420 EP - 1430 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Lohren, Hanna A1 - Bornhorst, Julia A1 - Fitkau, Romy A1 - Pohl, Gabriele A1 - Galla, Hans-Joachim A1 - Schwerdtle, Tanja T1 - Effects on and transfer across the blood-brain barrier in vitro BT - Comparison of organic and inorganic mercury species N2 - Background: Transport of methylmercury (MeHg) across the blood-brain barrier towards the brain side is well discussed in literature, while ethylmercury (EtHg) and inorganic mercury are not adequately characterized regarding their entry into the brain. Studies investigating a possible efflux out of the brain are not described to our knowledge. Methods: This study compares, for the first time, effects of organic methylmercury chloride (MeHgCl), EtHg-containing thiomersal and inorganic Hg chloride (HgCl2) on as well as their transfer across a primary porcine in vitro model of the blood-brain barrier. Results: With respect to the barrier integrity, the barrier model exhibited a much higher sensitivity towards HgCl2 following basolateral incubation (brain-facing side) as compared to apical application (blood-facing side). These HgCl2 induced effects on the barrier integrity after brain side incubation are comparable to that of the organic species, although MeHgCl and thiomersal exerted much higher cytotoxic effects in the barrier building cells. Hg transfer rates following exposure to organic species in both directions argue for diffusion as transfer mechanism. Inorganic Hg application surprisingly resulted in a Hg transfer out of the brain-facing compartment. Conclusions: In case of MeHgCl and thiomersal incubation, mercury crossed the barrier in both directions, with a slight accumulation in the basolateral, brain-facing compartment, after simultaneous incubation in both compartments. For HgCl2, our data provide first evidence that the blood-brain barrier transfers mercury out of the brain. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 406 KW - organic mercury KW - inorganic mercury KW - methylmercury KW - thiomersal KW - mercuric mercury KW - in vitro blood-brain barrier model Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401776 ER - TY - JOUR A1 - Crone, Barbara A1 - Aschner, Michael A. A1 - Schwerdtle, Tanja A1 - Karst, Uwe A1 - Bornhorst, Julia T1 - Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS JF - Metallomics : integrated biometal science N2 - cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 mm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose) metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable. Y1 - 2015 U6 - https://doi.org/10.1039/c5mt00096c SN - 1756-5901 SN - 1756-591X VL - 7 IS - 7 SP - 1189 EP - 1195 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Chen, Pan A1 - DeWitt, Margaret R. A1 - Bornhorst, Julia A1 - Soares, Felix A. A1 - Mukhopadhyay, Somshuvra A1 - Bowman, Aaron B. A1 - Aschner, Michael A. T1 - Age- and manganese-dependent modulation of dopaminergic phenotypes in a JF - Metallomics : integrated biometal science Y1 - 2015 U6 - https://doi.org/10.1039/c4mt00292j SN - 1756-5901 SN - 1756-591X VL - 7 IS - 2 SP - 289 EP - 298 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kumar, Kevin K. A1 - Goodwin, Cody R. A1 - Uhouse, Michael A. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - McLean, John A. A1 - Bowman, Aaron B. T1 - Untargeted metabolic profiling identifies interactions between JF - Metallomics : integrated biometal science Y1 - 2015 U6 - https://doi.org/10.1039/c4mt00223g SN - 1756-5901 SN - 1756-591X VL - 7 IS - 2 SP - 363 EP - 370 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Aschner, Michael A. T1 - Manganese metabolism in humans T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Manganese (Mn) is an essential nutrient for intracellular activities; it functions as a cofactor for a variety of enzymes, including arginase, glutamine synthetase (GS), pyruvate carboxylase and Mn superoxide dismutase (Mn-SOD). Through these metalloproteins, Mn plays critically important roles in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activities. Mn deficiency is rare. In contrast Mn poisoning may be encountered upon overexposure to this metal. Excessive Mn tends to accumulate in the liver, pancreas, bone, kidney and brain, with the latter being the major target of Mn intoxication. Hepatic cirrhosis, polycythemia, hypermanganesemia, dystonia and Parkinsonism-like symptoms have been reported in patients with Mn poisoning. In recent years, Mn has come to the forefront of environmental concerns due to its neurotoxicity. Molecular mechanisms of Mn toxicity include oxidative stress, mitochondrial dysfunction, protein misfolding, endoplasmic reticulum (ER) stress, autophagy dysregulation, apoptosis, and disruption of other metal homeostasis. The mechanisms of Mn homeostasis are not fully understood. Here, we will address recent progress in Mn absorption, distribution and elimination across different tissues, as well as the intracellular regulation of Mn homeostasis in cells. We will conclude with recommendations for future research areas on Mn metabolism. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 711 KW - Manganese KW - Metal Metabolism KW - Homeostasis KW - Blood-Brain Barrier KW - Neurotoxicity KW - Transporters KW - Review Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427432 SN - 1866-8372 IS - 711 ER - TY - JOUR A1 - Cramer, Sandra A1 - Tacke, Sebastian A1 - Bornhorst, Julia A1 - Klingauf, Jürgen A1 - Schwerdtle, Tanja A1 - Galla, Hans-Joachim T1 - The Influence of Silver Nanoparticles on the Blood-Brain and the Blood-Cerebrospinal Fluid Barrier in vitro JF - Journal of Nanomedicine & Nanotechnology N2 - The use of silver nanoparticles in medical and consumer products such as wound dressings, clothing and cosmetic has increased significantly in recent years. Still, the influence of these particles on our health and especially on our brain, has not been examined adequately up to now. We studied the influence of AgEO- (Ethylene Oxide) and AgCitrate-Nanoparticles (NPs) on the protective barriers of the brain, namely the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (blood-CSF) barrier in vitro. The NPs toxicity was evaluated by examining changes in membrane integrity, cell morphology, barrier properties, oxidative stress and inflammatory reactions. AgNPs decreased cell viability, disturbed barrier integrity and tight junctions and triggered oxidative stress and DNA strand breaks. However, all mentioned effects were, at least partly, suppressed by a Citrate-coating and were most pronounced in the cells of the BBB as compared to the epithelial cells representing the blood-CSF barrier. AgEO- but not AgCitrate-NPs also triggered an inflammatory reaction in porcine brain capillary endothelial cells (PBCEC), which represent the BBB. Our data indicate that AgNPs may cause adverse effects within the barriers of the brain, but their toxicity can be reduced by choosing an appropriate coating material. Y1 - 2014 U6 - https://doi.org/10.4172/2157-7439.1000225 SN - 2157-7439 VL - 5 IS - 5 ER - TY - JOUR A1 - Witt, B. A1 - Bornhorst, Julia A1 - Mitze, H. A1 - Ebert, Franziska A1 - Meyer, S. A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures JF - Metallomics : integrated biometal science N2 - Arsenic-containing hydrocarbons (AsHCs), natural products found in seafood, have recently been shown to exert toxic effects in human neurons. In this study we assessed the toxicity of three AsHCs in cultured human astrocytes. Due to the high cellular accessibility and substantial toxicity observed astrocytes were identified as further potential brain target cells for arsenolipids. Thereby, the AsHCs exerted a 5-19-fold higher cytotoxicity in astrocytes as compared to arsenite. Next we compared the toxicity of the arsenicals in a co-culture model of the respective human astrocytes and neurons. Notably the AsHCs did not show any substantial toxic effects in the co-culture, while arsenite did. The arsenic accessibility studies indicated that in the co-culture astrocytes protect neurons against cellular arsenic accumulation especially after incubation with arsenolipids. In summary, these data underline the importance of the glial-neuron interaction when assessing the in vitro neurotoxicity of new unclassified metal species. Y1 - 2017 U6 - https://doi.org/10.1039/c7mt00036g SN - 1756-5901 SN - 1756-591X VL - 9 SP - 442 EP - 446 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Aschner, Michael A. A1 - Palinski, Catherine A1 - Sperling, Michael A1 - Karst, U. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Imaging metals in Caenorhabditis elegans JF - Metallomics : integrated biometal science N2 - Systemic trafficking and storage of essential metal ions play fundamental roles in living organisms by serving as essential cofactors in various cellular processes. Thereby metal quantification and localization are critical steps in understanding metal homeostasis, and how their dyshomeostasis might contribute to disease etiology and the ensuing pathologies. Furthermore, the amount and distribution of metals in organisms can provide insight into their underlying mechanisms of toxicity and toxicokinetics. While in vivo studies on metal imaging in mammalian experimental animals are complex, time- and resource-consuming, the nematode Caenorhabditis elegans (C. elegans) provides a suitable comparative and complementary model system. Expressing homologous genes to those inherent to mammals, including those that regulate metal homeostasis and transport, C. elegans has become a powerful tool to study metal homeostasis and toxicity. A number of recent technical advances have been made in the development and application of analytical methods to visualize metal ions in C. elegans. Here, we briefly summarize key findings and challenges of the three main techniques and their application to the nematode, namely sensing fluorophores, microbeam synchrotron radiation X-ray fluorescence as well as laser ablation ( LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). Y1 - 2017 U6 - https://doi.org/10.1039/c6mt00265j SN - 1756-5901 SN - 1756-591X VL - 9 SP - 357 EP - 364 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kumar, Kevin K. A1 - Goodwin, Cody R. A1 - Uhouse, Michael A. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - McLean, John A. A1 - Bowman, Aaron B. T1 - Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status JF - Metallomics N2 - Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity. KW - hallervorden-spatz-syndrome KW - mobility-mass spectrometry KW - energy-metabolism KW - coenzyme-a KW - model KW - neurotoxicity KW - glutathione KW - database KW - cells KW - neurodegeneration Y1 - 2015 U6 - https://doi.org/10.1039/C4MT00223G SN - 1756-591X SN - 1756-5901 VL - 7 SP - 363 EP - 370 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Weishaupt, Ann-Kathrin A1 - Baesler, Jessica A1 - Brinkmann, Vanessa A1 - Wellenberg, Anna A1 - Winkelbeiner, Nicola Lisa A1 - Gremme, Anna A1 - Aschner, Michael A1 - Fritz, Gerhard A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans JF - International Journal of Molecular Sciences N2 - Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms. KW - manganese KW - oxidative stress KW - DNA repair KW - DNA damage response KW - Caenorhabditis elegans Y1 - 2021 U6 - https://doi.org/10.3390/ijms222010905 SN - 1422-0067 VL - 22 IS - 20 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rohn, Isabelle A1 - Raschke, Stefanie A1 - Aschner, Michael A1 - Tuck, Simon A1 - Kuehnelt, Doris A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Treatment of caenorhabditis elegans with small selenium species enhances antioxidant defense systems JF - Molecular nutrition & food research : bioactivity, chemistry, immunology, microbiology, safety, technology N2 - ScopeSmall selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. Methods and resultsIn the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. ConclusionSe species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake. KW - antioxidant defense systems KW - caenorhabditis elegans KW - selenium KW - oxidative stress KW - selenoproteins Y1 - 2019 U6 - https://doi.org/10.1002/mnfr.201801304 SN - 1613-4125 SN - 1613-4133 VL - 63 IS - 9 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Rohn, Isabelle A1 - Marschall, Talke Anu A1 - Kröpfl, Nina A1 - Jensen, Kenneth Bendix A1 - Aschner, Michael A1 - Tuck, Simon A1 - Kuehnelt, Doris A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans JF - Metallomics : integrated biometal science N2 - The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and -glutamyl-MeSeCys (-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode. Y1 - 2018 U6 - https://doi.org/10.1039/c8mt00066b SN - 1756-5901 SN - 1756-591X VL - 10 IS - 6 SP - 818 EP - 827 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Gubert, Priscila A1 - Puntel, Bruna A1 - Lehmen, Tassia A1 - Fessel, Joshua P. A1 - Cheng, Pan A1 - Bornhorst, Julia A1 - Trindade, Lucas Siqueira A1 - Avila, Daiana S. A1 - Aschner, Michael A1 - Soares, Felix A. A. T1 - Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Manganese (Mn) is an essential trace element for physiological functions since it acts as an enzymatic co-factor. Nevertheless, overexposure to Mn has been associated with a pathologic condition called manganism. Furthermore, Mn has been reported to affect lipid metabolism by mechanisms which have yet to be established. Herein, we used the nematode Caenorhabditis elegans to examine Mn’s effects on the dopaminergic (DAergic) system and determine which transcription factors that regulate with lipid metabolism are affected by it. Worms were exposed to Mn for four hours in the presence of bacteria and in a liquid medium (85 mM NaCl). Mn increased fat storage as evidenced both by Oil Red O accumulation and triglyceride levels. In addition, metabolic activity was reduced as a reflection of decreased oxygen consumption caused by Mn. Mn also affected feeding behavior as evidenced by decreased pharyngeal pumping rate. DAergic neurons viability were not altered by Mn, however the dopamine levels were significantly reduced following Mn exposure. Furthermore, the expression of sbp-1 transcription factor and let-363 protein kinase responsible for lipid accumulation control was increased and decreased, respectively, by Mn. Altogether, our data suggest that Mn increases the fat storage in C. elegans, secondary to DAergic system alterations, under the control of SBP-1 and LET-363 proteins. KW - Manganese KW - Caenorhabditis elegans KW - Lipid metabolism KW - Dopaminergic system KW - Manganism Y1 - 2018 U6 - https://doi.org/10.1016/j.neuro.2018.04.008 SN - 0161-813X SN - 1872-9711 VL - 67 SP - 65 EP - 72 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ferrer, Beatriz A1 - Peres, Tanara Vieira A1 - dos Santos, Alessandra Antunes A1 - Bornhorst, Julia A1 - Morcillo, Patricia A1 - Goncalves, Cinara Ludvig A1 - Aschner, Michael T1 - Methylmercury affects the expression of hypothalamic neuropeptides that control body weight in C57BL/6J mice JF - Toxicological sciences N2 - Methylmercury (MeHg) is an environmental pollutant that affects primarily the central nervous system (CNS), causing neurological alterations. An early symptom of MeHg poisoning is the loss of body weight and appetite. Moreover, the CNS has an important role in controlling energy homeostasis. It is known that in the hypothalamus nutrient and hormonal signals converge to orchestrate control of body weight and food intake. In this study, we investigated if MeHg is able to induce changes in the expression of key hypothalamic neuropeptides that regulate energy homeostasis. Thus, hypothalamic neuronal mouse cell line GT 1-7 was treated with MeHg at different concentrations (0, 0.5, 1, and 5 mu M). MeHg induced the expression of the anorexigenic neuropeptide pro-omiomelanocortin (Pomc) and the orexigenic peptide Agouti-related peptide (Agrp) in a concentration-dependent manner, suggesting deregulation of mechanisms that control body weight. To confirm these in vitro observations, 8-week-old C57BL/6J mice (males and females) were exposed to MeHg in drinking water, modeling the most prevalent exposure route to this metal. After 30-day exposure, no changes in body weight were detected. However, MeHg treated males showed a significant decrease in fat depots. Moreover, MeHg affected the expression of hypothalamic neuropeptides that control food intake and body weight in a gender-and dose-dependent manner. Thus, MeHg increases Pomc mRNA only in males in a dose-dependent way, and it does not have effects on the expression of Agrp mRNA. The present study shows, for first time, that MeHg is able to induce changes in hypothalamic neuropeptides that regulate energy homeostasis, favoring an anorexigenic/catabolic profile. KW - methylmercury KW - hypothalamus KW - neuropeptides KW - control body weight KW - glucose homeostasis Y1 - 2018 U6 - https://doi.org/10.1093/toxsci/kfy052 SN - 1096-6080 SN - 1096-0929 VL - 163 IS - 2 SP - 557 EP - 568 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Baesler, Jessica A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Consequences of manganese overload in C. elegans BT - oxidative stress and DNA damage JF - Naunyn-Schmiedeberg's archives of pharmacology / ed. for the Deutsche Gesellschaft für Experimentelle und Klinische Pharmakologie und Toxikologie Y1 - 2020 U6 - https://doi.org/10.1007/s00210-020-01828-y SN - 0028-1298 SN - 1432-1912 VL - 393 IS - SUPPL 1 SP - 9 EP - 9 PB - Springer CY - New York ER - TY - JOUR A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Aschner, Michael T1 - Manganese metabolism in humans JF - Frontiers in Bioscience-Landmark N2 - Manganese (Mn) is an essential nutrient for intracellular activities; it functions as a cofactor for a variety of enzymes, including arginase, glutamine synthetase (GS), pyruvate carboxylase and Mn superoxide dismutase (Mn-SOD). Through these metalloproteins, Mn plays critically important roles in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activities. Mn deficiency is rare. In contrast Mn poisoning may be encountered upon overexposure to this metal. Excessive Mn tends to accumulate in the liver, pancreas, bone, kidney and brain, with the latter being the major target of Mn intoxication. Hepatic cirrhosis, polycythemia, hypermanganesemia, dystonia and Parkinsonism-like symptoms have been reported in patients with Mn poisoning. In recent years, Mn has come to the forefront of environmental concerns due to its neurotoxicity. Molecular mechanisms of Mn toxicity include oxidative stress, mitochondrial dysfunction, protein misfolding, endoplasmic reticulum (ER) stress, autophagy dysregulation, apoptosis, and disruption of other metal homeostasis. The mechanisms of Mn homeostasis are not fully understood. Here, we will address recent progress in Mn absorption, distribution and elimination across different tissues, as well as the intracellular regulation of Mn homeostasis in cells. We will conclude with recommendations for future research areas on Mn metabolism. KW - Manganese KW - Metal Metabolism KW - Homeostasis KW - Blood-Brain Barrier KW - Neurotoxicity KW - Transporters KW - Review Y1 - 2018 U6 - https://doi.org/10.2741/4665 SN - 1093-9946 SN - 1093-4715 VL - 23 IS - 9 SP - 1655 EP - 1679 PB - Frontiers in Bioscience INC CY - Irvine ER - TY - JOUR A1 - Baesler, Jessica A1 - Kopp, Johannes Florian A1 - Pohl, Gabriele A1 - Aschner, Michael A1 - Haase, Hajo A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Zn homeostasis in genetic models of Parkinson’s disease in Caenorhabditis elegans JF - Journal of Trace Elements in Medicine and Biology N2 - While the underlying mechanisms of Parkinson’s disease (PD) are still insufficiently studied, a complex interaction between genetic and environmental factors is emphasized. Nevertheless, the role of the essential trace element zinc (Zn) in this regard remains controversial. In this study we altered Zn balance within PD models of the versatile model organism Caenorhabditis elegans (C. elegans) in order to examine whether a genetic predisposition in selected genes with relevance for PD affects Zn homeostasis. Protein-bound and labile Zn species act in various areas, such as enzymatic catalysis, protein stabilization pathways and cell signaling. Therefore, total Zn and labile Zn were quantitatively determined in living nematodes as individual biomarkers of Zn uptake and bioavailability with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) or a multi-well method using the fluorescent probe ZinPyr-1. Young and middle-aged deletion mutants of catp-6 and pdr-1, which are orthologues of mammalian ATP13A2 (PARK9) and parkin (PARK2), showed altered Zn homeostasis following Zn exposure compared to wildtype worms. Furthermore, age-specific differences in Zn uptake were observed in wildtype worms for total as well as labile Zn species. These data emphasize the importance of differentiation between Zn species as meaningful biomarkers of Zn uptake as well as the need for further studies investigating the role of dysregulated Zn homeostasis in the etiology of PD. KW - Caenorhabditis elegans KW - Zinc KW - Zinc homeostasis KW - Parkinson disease KW - Labile zinc Y1 - 2019 U6 - https://doi.org/10.1016/j.jtemb.2019.05.005 VL - 55 SP - 44 EP - 49 PB - Elsevier CY - München ER - TY - JOUR A1 - Baesler, Jessica A1 - Kopp, Johannes F. A1 - Pohl, Gabriele A1 - Aschner, Michael A1 - Haase, Hajo A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Zn homeostasis in genetic models of Parkinson’s disease in Caenorhabditis elegans JF - Journal of trace elements in medicine and biology KW - Caenorhabditis elegans KW - Zinc KW - Zinc homeostasis KW - Parkinson disease KW - Labile zinc Y1 - 2019 U6 - https://doi.org/10.1016/j.jtemb.2019.05.005 SN - 0946-672X VL - 55 SP - 44 EP - 49 PB - Elsevier GMBH CY - München ER - TY - GEN A1 - Nicolai, Merle Marie A1 - Weishaupt, Ann-Kathrin A1 - Baesler, Jessica A1 - Brinkmann, Vanessa A1 - Wellenberg, Anna A1 - Winkelbeiner, Nicola Lisa A1 - Gremme, Anna A1 - Aschner, Michael A1 - Fritz, Gerhard A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1173 KW - manganese KW - oxidative stress KW - DNA repair KW - DNA damage response KW - Caenorhabditis elegans Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523275 SN - 1866-8372 IS - 1173 ER - TY - JOUR A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Meyer, Sören A1 - Ziemann, Vanessa A1 - Xiong, Chan A1 - Guttenberger, Nikolaus A1 - Raab, Andrea A1 - Baesler, Jessica A1 - Aschner, Michael A1 - Feldmann, Jörg A1 - Francesconi, Kevin A1 - Raber, Georg A1 - Schwerdtle, Tanja T1 - Toxicity of three types of arsenolipids BT - species-specific effects in Caenorhabditis elegans JF - Metallomics N2 - Although fish and seafood are well known for their nutritional benefits, they contain contaminants that might affect human health. Organic lipid-soluble arsenic species, so called arsenolipids, belong to the emerging contaminants in these food items; their toxicity has yet to be systematically studied. Here, we apply the in vivo model Caenorhabditis elegans to assess the effects of two arsenic-containing hydrocarbons (AsHC), a saturated arsenic-containing fatty acid (AsFA), and an arsenic-containing triacylglyceride (AsTAG) in a whole organism. Although all arsenolipids were highly bioavailable in Caenorhabditis elegans, only the AsHCs were substantially metabolized to thioxylated or shortened metabolic products and induced significant toxicity, affecting both survival and development. Furthermore, the AsHCs were several fold more potent as compared to the toxic reference arsenite. This study clearly indicates the need for a full hazard identification of subclasses of arsenolipids to assess whether they pose a risk to human health. Y1 - 2020 U6 - https://doi.org/https://doi.org/10.1039/d0mt00039f SN - 1756-591X SN - 1756-5901 VL - 12 IS - 5 SP - 794 EP - 798 PB - Oxford University Press CY - Cambridge ER - TY - GEN A1 - Winkelbeiner, Nicola Lisa A1 - Wandt, Viktoria Klara Veronika A1 - Ebert, Franziska A1 - Lossow, Kristina A1 - Bankoglu, Ezgi E. A1 - Martin, Maximilian A1 - Mangerich, Aswin A1 - Stopper, Helga A1 - Bornhorst, Julia A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice BT - Impact of Sex and Age T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2’-deoxyguanosine (8-oxodG), 5-hydroxy-2’-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1021 KW - maintenance of genomic integrity KW - ageing KW - sex KW - DNA damage KW - base excision repair (incision activity) KW - DNA damage response KW - poly(ADP-ribosyl)ation KW - liver Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484831 SN - 1866-8372 IS - 1021 ER - TY - JOUR A1 - Winkelbeiner, Nicola Lisa A1 - Wandt, Viktoria Klara Veronika A1 - Ebert, Franziska A1 - Lossow, Kristina A1 - Bankoglu, Ezgi E. A1 - Martin, Maximilian A1 - Mangerich, Aswin A1 - Stopper, Helga A1 - Bornhorst, Julia A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice BT - Impact of Sex and Age JF - International Journal of Molecular Sciences N2 - Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2’-deoxyguanosine (8-oxodG), 5-hydroxy-2’-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery. KW - maintenance of genomic integrity KW - ageing KW - sex KW - DNA damage KW - base excision repair (incision activity) KW - DNA damage response KW - poly(ADP-ribosyl)ation KW - liver Y1 - 2020 U6 - https://doi.org/10.3390/ijms21186600 SN - 1422-0067 VL - 21 IS - 18 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Wandt, Viktoria Klara Veronika A1 - Winkelbeiner, Nicola Lisa A1 - Bornhorst, Julia A1 - Witt, Barbara A1 - Raschke, Stefanie A1 - Simon, Luise A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A matter of concern BT - trace element dyshomeostasis and genomic stability in neurons JF - Redox Biology N2 - Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability Y1 - 2021 U6 - https://doi.org/10.1016/j.redox.2021.101877 VL - 41 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Witt, Barbara A1 - Friese, Sharleen A1 - Michaelis, Vivien A1 - Hölz-Armstrong, Lisa A1 - Martin, Maximilian A1 - Ebert, Franziska A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells JF - Food and chemical toxicology N2 - Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes. KW - Manganese KW - Dopaminergic neurons KW - DNA integrity KW - DNA repair KW - Neurodegeneration KW - Oxidative stress KW - Genotoxicity Y1 - 2022 U6 - https://doi.org/10.1016/j.fct.2022.112822 SN - 0278-6915 SN - 1873-6351 VL - 161 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Baesler, Jessica A1 - Michaelis, Vivien A1 - Stiboller, Michael A1 - Haase, Hajo A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Sturzenbaum, Stephen R. A1 - Bornhorst, Julia T1 - Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1364 KW - aging KW - C. elegans KW - homeostasis KW - manganese KW - zinc Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-514995 SN - 1866-8372 IS - 8 ER - TY - JOUR A1 - Baesler, Jessica A1 - Michaelis, Vivien A1 - Stiboller, Michael A1 - Haase, Hajo A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Sturzenbaum, Stephen R. A1 - Bornhorst, Julia T1 - Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis JF - Molecular Nutrition and Food Research N2 - Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. KW - aging KW - C. elegans KW - homeostasis KW - manganese KW - zinc Y1 - 2021 U6 - https://doi.org/10.1002/mnfr.202001176 SN - 1613-4133 SN - 1613-4125 VL - 65 IS - 8 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim ER - TY - JOUR A1 - Chakraborty, Sudipta A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Bowman, Aaron B. A1 - Aschner, Michael A. T1 - Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C-elegans JF - Metallomics : integrated biometal science Y1 - 2015 U6 - https://doi.org/10.1039/c5mt00052a SN - 1756-5901 SN - 1756-591X VL - 7 IS - 5 SP - 847 EP - 856 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schumacher, Fabian A1 - Chakraborty, Sudipta A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - Bornhorst, Julia T1 - Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans JF - Talanta : the international journal of pure and applied analytical chemistry N2 - Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C elegans to the monoamine oxidase B (MAOB) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. (C) 2015 Elsevier B.V. All rights reserved. KW - Caenorhabditis elegans KW - Dopamine KW - Serotonin KW - Liquid chromatography-tandem mass spectrometry KW - Isotope-dilution analysis Y1 - 2015 U6 - https://doi.org/10.1016/j.talanta.2015.05.057 SN - 0039-9140 SN - 1873-3573 VL - 144 SP - 71 EP - 79 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Varão Moura, Alexandre A1 - Aparecido Rosini Silva, Alex A1 - Domingos Santo da Silva, José A1 - Aleixo Leal Pedroza, Lucas A1 - Bornhorst, Julia A1 - Stiboller, Michael A1 - Schwerdtle, Tanja A1 - Gubert, Priscila T1 - Determination of ions in Caenorhabditis elegans by ion chromatography JF - Journal of chromatography. B N2 - The Caenorhabditis elegans (C. elegans) is a model organism that has been increasingly used in health and environmental toxicity assessments. The quantification of such elements in vivo can assist in studies that seek to relate the exposure concentration to possible biological effects. Therefore, this study is the first to propose a method of quantitative analysis of 21 ions by ion chromatography (IC), which can be applied in different toxicity studies in C. elegans. The developed method was validated for 12 anionic species (fluoride, acetate, chloride, nitrite, bromide, nitrate, sulfate, oxalate, molybdate, dichromate, phosphate, and perchlorate), and 9 cationic species (lithium, sodium, ammonium, thallium, potassium, magnesium, manganese, calcium, and barium). The method did not present the presence of interfering species, with R2 varying between 0.9991 and 0.9999, with a linear range from 1 to 100 mu g L-1. Limits of detection (LOD) and limits of quantification (LOQ) values ranged from 0.2319 mu g L-1 to 1.7160 mu g L-1 and 0.7028 mu g L-1 to 5.1999 mu g L-1, respectively. The intraday and interday precision tests showed an Relative Standard Deviation (RSD) below 10.0 % and recovery ranging from 71.0 % to 118.0 % with a maximum RSD of 5.5 %. The method was applied to real samples of C. elegans treated with 200 uM of thallium acetate solution, determining the uptake and bioaccumulated Tl+ content during acute exposure. KW - ion chromatography KW - C. elegans KW - method development KW - method validation KW - ion quantification Y1 - 2022 U6 - https://doi.org/10.1016/j.jchromb.2022.123312 SN - 1570-0232 SN - 1873-376X VL - 1204 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - CHAP A1 - Michaelis, Vivien A1 - Aengenheister, Leonie A1 - Schwerdtle, Tanja A1 - Buerki-Thurnherr, Tina A1 - Bornhorst, Julia T1 - Manganese translocation across an in vitro model of human villous trophoblast T2 - Placenta Y1 - 2021 SN - 0143-4004 SN - 1532-3102 VL - 112 SP - E63 EP - E64 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - GEN A1 - Chakraborty, Sudipta A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Bowman, Aaron B. A1 - Aschner, Michael A. T1 - Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans N2 - Overexposure to the essential metal manganese (Mn) can result in an irreversible condition known as manganism that shares similar pathophysiology with Parkinson's disease (PD), including dopaminergic (DAergic) cell loss that leads to motor and cognitive impairments. However, the mechanisms behind this neurotoxicity and its relationship with PD remain unclear. Many genes confer risk for autosomal recessive, early-onset PD, including the parkin/PARK2 gene that encodes for the E3 ubiquitin ligase Parkin. Using Caenorhabditis elegans (C. elegans) as an invertebrate model that conserves the DAergic system, we previously reported significantly increased Mn accumulation in pdr-1/parkin mutants compared to wildtype (WT) animals. For the current study, we hypothesize that this enhanced accumulation is due to alterations in Mn transport in the pdr-1 mutants. While no change in mRNA expression of the major Mn importer proteins (smf-1-3) was found in pdr-1 mutants, significant downregulation in mRNA levels of the putative Mn exporter ferroportin (fpn-1.1) was observed. Using a strain overexpressing fpn-1.1 in worms lacking pdr-1, we show evidence for attenuation of several endpoints of Mn-induced toxicity, including survival, metal accumulation, mitochondrial copy number and DAergic integrity, compared to pdr-1 mutants alone. These changes suggest a novel role of pdr-1 in modulating Mn export through altered transporter expression, and provides further support of metal dyshomeostasis as a component of Parkinsonism pathophysiology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 290 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99508 ER -