TY - JOUR A1 - Boyd, A. J. A1 - Spence, Harlan E. A1 - Huang, Chia-Lin A1 - Reeves, Geoffrey D. A1 - Baker, Daniel N. A1 - Turner, D. L. A1 - Claudepierre, Seth G. A1 - Fennell, Joseph F. A1 - Blake, J. Bernard A1 - Shprits, Yuri T1 - Statistical properties of the radiation belt seed population JF - Journal of geophysical research : Space physics N2 - We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular, we investigate the relationship between the tens and hundreds of keV seed electrons and >1 MeV core radiation belt electron population. Using a cross-correlation analysis, we find that the seed and core populations are well correlated with a coefficient of approximate to 0.73 with a time lag of 10-15 h. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of the acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of hundreds of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration. Y1 - 2016 U6 - https://doi.org/10.1002/2016JA022652 SN - 2169-9380 SN - 2169-9402 VL - 121 SP - 7636 EP - 7646 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ripoll, Jean-Francois A1 - Loridan, Vivien A1 - Denton, Michael H. A1 - Cunningham, Gregory A1 - Reeves, G. A1 - Santolik, O. A1 - Fennell, Joseph A1 - Turner, Drew L. A1 - Drozdov, Alexander A1 - Cervantes Villa, Juan Sebastian A1 - Shprits, Yuri A1 - Thaller, Scott A. A1 - Kurth, William S. A1 - Kletzing, Craig A. A1 - Henderson, Michael G. A1 - Ukhorskiy, Aleksandr Y. T1 - Observations and Fokker-Planck Simulations of the L-Shell, Energy, and Times JF - Journal of geophysical research : Space physics N2 - The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch angle (alpha(0)) is analyzed during the calm 11-day interval (4-15 March) following the 1 March 2013 storm. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, alpha(0)) regions persist through 11 days of hiss wave scattering; the pitch angle-dependent inner belt core (L similar to <2.2 and E < 700 keV), pitch angle homogeneous outer belt low-energy core (L > similar to 5 and E similar to < 100 keV), and a distinct pocket of electrons (L similar to [4.5, 5.5] and E similar to [0.7, 2] MeV). The pitch angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for alpha(0) similar to <60 degrees, E > 100 keV, 3.5 < L < L-pp similar to 6. Thus, observed unidirectional flux decays can be used to estimate local pitch angle diffusion rates in that region. Top-hat distributions are computed and observed at L similar to 3-3.5 and E = 100-300 keV. KW - radiation belts KW - wave-particle interactions KW - electron lifetime KW - pitch angle diffusion coefficient KW - hiss waves Y1 - 2018 U6 - https://doi.org/10.1029/2018JA026111 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 2 SP - 1125 EP - 1142 PB - American Geophysical Union CY - Washington ER -