TY - JOUR A1 - Soergel, Bjoern A1 - Kriegler, Elmar A1 - Weindl, Isabelle A1 - Rauner, Sebastian A1 - Dirnaichner, Alois A1 - Ruhe, Constantin A1 - Hofmann, Matthias A1 - Bauer, Nico A1 - Bertram, Christoph A1 - Bodirsky, Benjamin Leon A1 - Leimbach, Marian A1 - Leininger, Julia A1 - Levesque, Antoine A1 - Luderer, Gunnar A1 - Pehl, Michaja A1 - Wingens, Christopher A1 - Baumstark, Lavinia A1 - Beier, Felicitas A1 - Dietrich, Jan Philipp A1 - Humpenöder, Florian A1 - von Jeetze, Patrick A1 - Klein, David A1 - Koch, Johannes A1 - Pietzcker, Robert C. A1 - Strefler, Jessica A1 - Lotze-Campen, Hermann A1 - Popp, Alexander T1 - A sustainable development pathway for climate action within the UN 2030 Agenda JF - Nature climate change N2 - Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries. KW - climate-change mitigation KW - climate-change policy KW - socioeconomic scenarios KW - sustainability Y1 - 2021 U6 - https://doi.org/10.1038/s41558-021-01098-3 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 8 SP - 656 EP - 664 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Xie, Dongjiu A1 - Xu, Yaolin A1 - Wang, Yonglei A1 - Pan, Xuefeng A1 - Härk, Eneli A1 - Kochovski, Zdravko A1 - Eljarrat, Alberto A1 - Müller, Johannes A1 - Koch, Christoph T. A1 - Yuan, Jiayin A1 - Lu, Yan T1 - Poly(ionic liquid) nanovesicle-templated carbon nanocapsules functionalized with uniform iron nitride nanoparticles as catalytic sulfur host for Li-S batteries JF - ACS nano N2 - Poly(ionic liquid)s (PIL) are common precursors for heteroatom-doped carbon materials. Despite a relatively higher carbonization yield, the PIL-to-carbon conversion process faces challenges in preserving morphological and structural motifs on the nanoscale. Assisted by a thin polydopamine coating route and ion exchange, imidazoliumbased PIL nanovesicles were successfully applied in morphology-maintaining carbonization to prepare carbon composite nanocapsules. Extending this strategy further to their composites, we demonstrate the synthesis of carbon composite nanocapsules functionalized with iron nitride nanoparticles of an ultrafine, uniform size of 3-5 nm (termed "FexN@C "). Due to its unique nanostructure, the sulfur-loaded FexN@C electrode was tested to efficiently mitigate the notorious shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. The cavity of the carbon nanocapsules was spotted to better the loading content of sulfur. The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electronic conductivity and strong binding power to LiPSs. Benefiting from this well-crafted composite nanostructure, the constructed FexN@C/S cathode demonstrated a fairly high discharge capacity of 1085 mAh g(-1) at 0.5 C initially, and a remaining value of 930 mAh g(-1 )after 200 cycles. In addition, it exhibits an excellent rate capability with a high initial discharge capacity of 889.8 mAh g(-1) at 2 C. This facile PIL-to-nanocarbon synthetic approach is applicable for the exquisite design of complex hybrid carbon nanostructures with potential use in electrochemical energy storage and conversion. KW - poly(ionic liquid)s KW - nanovesicles KW - sulfur host KW - iron nitride KW - Li-S KW - batteries Y1 - 2022 U6 - https://doi.org/10.1021/acsnano.2c01992 SN - 1936-0851 SN - 1936-086X VL - 16 IS - 7 SP - 10554 EP - 10565 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ghani, Fatemeh A1 - Opitz, Andreas A1 - Pingel, Patrick A1 - Heimel, Georg A1 - Salzmann, Ingo A1 - Frisch, Johannes A1 - Neher, Dieter A1 - Tsami, Argiri A1 - Scherf, Ullrich A1 - Koch, Norbert T1 - Charge Transfer in and Conductivity of Molecularly Doped Thiophene-Based Copolymers JF - Journal of polymer science : B, Polymer physics N2 - The electrical conductivity of organic semiconductors can be enhanced by orders of magnitude via doping with strong molecular electron acceptors or donors. Ground-state integer charge transfer and charge-transfer complex formation between organic semiconductors and molecular dopants have been suggested as the microscopic mechanisms causing these profound changes in electrical materials properties. Here, we study charge-transfer interactions between the common molecular p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane and a systematic series of thiophene-based copolymers by a combination of spectroscopic techniques and electrical measurements. Subtle variations in chemical structure are seen to significantly impact the nature of the charge-transfer species and the efficiency of the doping process, underlining the need for a more detailed understanding of the microscopic doping mechanism in organic semiconductors to reliably guide targeted chemical design. KW - charge transfer KW - conducting polymers KW - doping KW - thiophene Y1 - 2015 U6 - https://doi.org/10.1002/polb.23631 SN - 0887-6266 SN - 1099-0488 VL - 53 IS - 1 SP - 58 EP - 63 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lange, Ilja A1 - Blakesley, James C. A1 - Frisch, Johannes A1 - Vollmer, Antje A1 - Koch, Norbert A1 - Neher, Dieter T1 - Band bending in conjugated polymer layers JF - Physical review letters N2 - We use the Kelvin probe method to study the energy-level alignment of four conjugated polymers deposited on various electrodes. Band bending is observed in all polymers when the substrate work function exceeds critical values. Through modeling, we show that the band bending is explained by charge transfer from the electrodes into a small density of states that extends several hundred meV into the band gap. The energetic spread of these states is correlated with charge-carrier mobilities, suggesting that the same states also govern charge transport in the bulk of these polymers. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevLett.106.216402 SN - 0031-9007 VL - 106 IS - 21 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Piersimoni, Fortunato A1 - Schlesinger, Raphael A1 - Benduhn, Johannes A1 - Spoltore, Donato A1 - Reiter, Sina A1 - Lange, Ilja A1 - Koch, Norbert A1 - Vandewal, Koen A1 - Neher, Dieter T1 - Charge Transfer Absorption and Emission at ZnO/Organic Interfaces JF - The journal of physical chemistry letters N2 - We investigate hybrid charge transfer states (HCTS) at the planar interface between a-NPD and ZnO by spectrally resolved electroluminescence (EL) and external quantum efficiency (EQE) measurements. Radiative decay of HCTSs is proven by distinct emission peaks in the EL spectra of such bilayer devices in the NIR at energies well below the bulk a-NPD or ZnO emission. The EQE spectra display low energy contributions clearly red-shifted with respect to the a-NPD photocurrent and partially overlapping with the EL emission. Tuning of the energy gap between the ZnO conduction band and a-NPD HOMO level (E-int) was achieved by modifying the ZnO surface with self-assembled monolayers based on phosphonic acids. We find a linear dependence of the peak position of the NIR EL on E-int, which unambiguously attributes the origin of this emission to radiative recombination between an electron on the ZnO and a hole on a-NPD. In accordance with this interpretation, we find a strictly linear relation between the open-circuit voltage and the energy of the charge state for such hybrid organicinorganic interfaces. Y1 - 2015 U6 - https://doi.org/10.1021/jz502657z SN - 1948-7185 VL - 6 IS - 3 SP - 500 EP - 504 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schubert, Marcel A1 - Dolfen, Daniel A1 - Frisch, Johannes A1 - Roland, Steffen A1 - Steyrleuthner, Robert A1 - Stiller, Burkhard A1 - Chen, Zhihua A1 - Scherf, Ullrich A1 - Koch, Norbert A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - Influence of aggregation on the performance of All-Polymer Solar Cells containing Low-Bandgap Naphthalenediimide Copolymers JF - dvanced energy materials N2 - The authors present efficient all-polymer solar cells comprising two different low-bandgap naphthalenediimide (NDI)-based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near-field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large-scale phase-separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donoracceptor heterojunction. KW - aggregation KW - morphology KW - naphthalenediimide KW - organic semiconductors KW - organic photovoltaics Y1 - 2012 U6 - https://doi.org/10.1002/aenm.201100601 SN - 1614-6832 VL - 2 IS - 3 SP - 369 EP - 380 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Frisch, Johannes A1 - Schubert, Marcel A1 - Preis, Eduard A1 - Rabe, Jürgen P. A1 - Neher, Dieter A1 - Scherf, Ullrich A1 - Koch, Norbert T1 - Full electronic structure across a polymer heterojunction solar cell JF - Journal of materials chemistry N2 - We correlate the morphology and energy level alignment of bilayer structures comprising the donor poly(3-hexylthiophene) (P3HT) and the acceptor polyfluorene copolymer poly(9,90dialklylfluorene-alt-4,7-bis(2,5-thiendiyl)-2,1,3-benzothiadiazole) (PFTBTT) with the performance of these bilayers in organic photovoltaic cells (OPVCs). The conducting polymer poly(ethylenedioxythiophene): poly (styrenesulfonate) (PEDT:PSS) was used as the bottom electrode and Ca as the top electrode. Ultraviolet photoelectron spectroscopy (UPS) revealed that notable interface dipoles occur at all interfaces across the OPVC structure, highlighting that vacuum level alignment cannot reliably be used to estimate the electronic properties for device design. Particularly the effective electrode work function values (after contact formation with the conjugated polymers) differ significantly from those of the pristine electrode materials. Chemical reactions between PEDT: PSS and P3HT on the one hand and Ca and PFTBTT on the other hand are identified as cause for the measured interface dipoles. The vacuum level shift between P3HT and PFTBTT is related to mutual energy level pinning at gap states. Annealing induced morphological changes at the P3HT/PFTBTT interface increased the efficiency of OPVCs, while the electronic structure was not affected by thermal treatment. Y1 - 2012 U6 - https://doi.org/10.1039/c1jm14968g SN - 0959-9428 VL - 22 IS - 10 SP - 4418 EP - 4424 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Rothe, Martin A1 - Zhao, Yuhang A1 - Müller, Johannes A1 - Kewes, Günter A1 - Koch, Christoph T. A1 - Lu, Yan A1 - Benson, Oliver T1 - Self-assembly of plasmonic nanoantenna-waveguide structures for subdiffractional chiral sensing JF - ACS nano N2 - Spin-momentum locking is a peculiar effect in the near-field of guided optical or plasmonic modes. It can be utilized to map the spinning or handedness of electromagnetic fields onto the propagation direction. This motivates a method to probe the circular dichroism of an illuminated chiral object. In this work, we demonstrate local, subdiffraction limited chiral coupling of light and propagating surface plasmon polaritons in a self-assembled system of a gold nanoantenna and a silver nanowire. A thin silica shell around the nanowire provides precise distance control and also serves as a host for fluorescent molecules, which indicate the direction of plasmon propagation. We characterize our nanoantenna-nanowire systems comprehensively through correlated electron microscopy, energy-dispersive X-ray spectroscopy, dark-field, and fluorescence imaging. Three-dimensional numerical simulations support the experimental findings. Besides our measurement of far-field polarization, we estimate sensing capabilities and derive not only a sensitivity of 1 mdeg for the ellipticity of the light field, but also find 10(3) deg cm(2)/dmol for the circular dichroism of an analyte locally introduced in the hot spot of the antenna-wire system. Thorough modeling of a prototypical design predicts on-chip sensing of chiral analytes. This introduces our system as an ultracompact sensor for chiral response far below the diffraction limit. KW - plasmonics KW - nanoparticle assemblies KW - core-shell KW - spin-orbit coupling KW - chirality KW - circular dichroism KW - nano-optics Y1 - 2021 U6 - https://doi.org/10.1021/acsnano.0c05240 SN - 1936-0851 SN - 1936-086X VL - 15 IS - 1 SP - 351 EP - 361 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schubert, Marcel A1 - Frisch, Johannes A1 - Allard, Sybille A1 - Preis, Eduard A1 - Scherf, Ullrich A1 - Koch, Norbert A1 - Neher, Dieter T1 - Tuning side chain and main chain order in a prototypical donor-acceptor copolymer BT - implications for optical, electronic, and photovoltaic characteristics JF - Elementary Processes in Organic Photovoltaics N2 - The recent development of donor–acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure–property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties. KW - Aggregate states KW - All-polymer heterojunctions KW - Alternating copolymers KW - Ambipolar charge transport KW - Ambipolar materials KW - Backbone modifications KW - Bilayer solar cells KW - Charge separation KW - Conformational disorder KW - Crystalline phases KW - Donor-acceptor copolymers KW - Electron traps KW - Energetic disorder KW - Energy-level alignment KW - Fermi-level alignment KW - Fermi-level pinning KW - Interface dipole KW - Interlayer KW - Intrachain order KW - Intragap states KW - Microscopic morphology KW - Mobility imbalance KW - Mobility relaxation KW - Monte Carlo simulation KW - Multiple trapping model KW - Nonradiative recombination KW - OFET KW - Open-circuit voltage KW - Optoelectronic properties KW - Partially alternating copolymers KW - Photo-CELIV KW - Photocurrent KW - Photovoltaic gap KW - Polymer intermixing KW - Recombination losses KW - Spectral diffusion KW - Statistical copolymers KW - Stille-type cross-coupling KW - Structure-property relationships KW - Time-dependent mobility KW - Time-of-flight (TOF) KW - Transient photocurrent KW - Ultraviolet photoelectron spectroscopy KW - Vacuum-level alignment KW - X-ray photoelectron spectroscopy Y1 - 2016 SN - 978-3-319-28338-8 SN - 978-3-319-28336-4 U6 - https://doi.org/10.1007/978-3-319-28338-8_10 SN - 0065-3195 VL - 272 SP - 243 EP - 265 PB - Springer CY - Berlin ER - TY - JOUR A1 - Albrecht, Steve A1 - Janietz, Silvia A1 - Schindler, Wolfram A1 - Frisch, Johannes A1 - Kurpiers, Jona A1 - Kniepert, Juliane A1 - Inal, Sahika A1 - Pingel, Patrick A1 - Fostiropoulos, Konstantinos A1 - Koch, Norbert A1 - Neher, Dieter T1 - Fluorinated Copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells JF - Journal of the American Chemical Society N2 - A novel fluorinated copolymer (F-PCPDTBT) is introduced and shown to exhibit significantly higher power conversion efficiency in bulk heterojunction solar cells with PC70BM compared to the well-known low-band-gap polymer PCPDTBT. Fluorination lowers the polymer HOMO level, resulting in high open-circuit voltages well exceeding 0.7 V. Optical spectroscopy and morphological studies with energy-resolved transmission electron microscopy reveal that the fluorinated polymer aggregates more strongly in pristine and blended layers, with a smaller amount of additives needed to achieve optimum device performance. Time-delayed collection field and charge extraction by linearly increasing voltage are used to gain insight into the effect of fluorination on the field dependence of free charge-carrier generation and recombination. F-PCPDTBT is shown to exhibit a significantly weaker field dependence of free charge-carrier generation combined with an overall larger amount of free charges, meaning that geminate recombination is greatly reduced. Additionally, a 3-fold reduction in non-geminate recombination is measured compared to optimized PCPDTBT blends. As a consequence of reduced non-geminate recombination, the performance of optimized blends of fluorinated PCPDTBT with PC70BM is largely determined by the field dependence of free-carrier generation, and this field dependence is considerably weaker compared to that of blends comprising the non-fluorinated polymer. For these optimized blends, a short-circuit current of 14 mA/cm(2), an open-circuit voltage of 0.74 V, and a fill factor of 58% are achieved, giving a highest energy conversion efficiency of 6.16%. The superior device performance and the low band-gap render this new polymer highly promising for the construction of efficient polymer-based tandem solar cells. Y1 - 2012 U6 - https://doi.org/10.1021/ja305039j SN - 0002-7863 VL - 134 IS - 36 SP - 14932 EP - 14944 PB - American Chemical Society CY - Washington ER -