TY - JOUR A1 - Melnick, Daniel A1 - Hillemann, Christian A1 - Jara Muñoz, Julius A1 - Garrett, Ed A1 - Cortes-Aranda, Joaquin A1 - Molina, Diego A1 - Tassara, Andrés A1 - Strecker, Manfred T1 - Hidden Holocene Slip Along the Coastal El Yolki Fault in Central Chile and Its Possible Link With Megathrust Earthquakes JF - Journal of geophysical research : Solid earth N2 - Megathrust earthquakes are commonly accompanied by increased upper-plate seismicity and occasionally triggered fault slip. In Chile, crustal faults slipped during and after the 2010 Maule (M8.8) earthquake. We studied the El Yolki fault (EYOF), a transtensional structure midways the Maule rupture not triggered in 2010. We mapped a Holocene coastal plain using light detection and ranging, which did not reveal surface ruptures. However, the inner-edge and shoreline angles along the coastal plain as well as 4.3- to 4.0-ka intertidal sediments are back-tilted on the EYOF footwall block, documenting 10 m of vertical displacement. These deformed markers imply similar to 2-mm/year throw rate, and dislocation models a slip rate of 5.6 mm/year for the EYOF. In a 5-m-deep trench, the Holocene intertidal sediments onlap to five erosive steps, interpreted as staircase wave-cut landforms formed by discrete events of relative sea level drop. We tentatively associated these steps with coseismic uplift during EYOF earthquakes between 4.3 and 4.0 ka. The Maule earthquake rupture may be subdivided into three subsegments based on coseismic slip and gravity anomalies. Coulomb stress transfer models predict neutral stress changes at the EYOF during the Maule earthquake but positive changes for a synthetic slip distribution at the central subsegment. If EYOF earthquakes were triggered by megathrust events, their slip distribution was probably focused in the central subsegment. Our study highlights the millennial variability of crustal faulting and the megathrust earthquake cycle in Chile, with global implications for assessing the hazards posed by hidden but potentially seismogenic coastal faults along subduction zones. KW - Central Chile KW - megathrust earthquake KW - crustal fault KW - seismotectonic segmentation KW - Middle Holocene KW - sea level change Y1 - 2019 U6 - https://doi.org/10.1029/2018JB017188 SN - 2169-9313 SN - 2169-9356 VL - 124 IS - 7 SP - 7280 EP - 7302 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Jara Muñoz, Julius A1 - Melnick, Daniel A1 - Li, Shaoyang A1 - Socquet, Anne A1 - Cortés-Aranda, Joaquín A1 - Brill, Dominik A1 - Strecker, Manfred T1 - The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The first step towards assessing hazards in seismically active regions involves mapping capable faults and estimating their recurrence times. While the mapping of active faults is commonly based on distinct geologic and geomorphic features evident at the surface, mapping blind seismogenic faults is complicated by the absence of on-fault diagnostic features. Here we investigated the Pichilemu Fault in coastal Chile, unknown until it generated a Mw 7.0 earthquake in 2010. The lack of evident surface faulting suggests activity along a partly-hidden blind fault. We used off-fault deformed marine terraces to estimate a fault-slip rate of 0.52 ± 0.04 m/ka, which, when integrated with satellite geodesy suggests a 2.12 ± 0.2 ka recurrence time for Mw~7.0 normal-faulting earthquakes. We propose that extension in the Pichilemu region is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes, which has implications for assessing the seismic potential of cryptic faults along convergent margins and elsewhere. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1294 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-574616 SN - 1866-8372 IS - 1294 ER - TY - JOUR A1 - Astudillo-Sotomayor, Luis A1 - Jara Muñoz, Julius A1 - Melnick, Daniel A1 - Cortés‐Aranda, Joaquín A1 - Tassara, Andrés A1 - Strecker, Manfred T1 - Fast Holocene slip and localized strain along the Liquiñe-Ofqui strike-slip fault system, Chile JF - Scientific reports N2 - In active tectonic settings dominated by strike-slip kinematics, slip partitioning across subparallel faults is a common feature; therefore, assessing the degree of partitioning and strain localization is paramount for seismic hazard assessments. Here, we estimate a slip rate of 18.8 +/- 2.0 mm/year over the past 9.0 +/- 0.1 ka for a single strand of the Liquirie-Ofqui Fault System, which straddles the Main Cordillera in Southern Chile. This Holocene rate accounts for similar to 82% of the trench-parallel component of oblique plate convergence and is similar to million-year estimates integrated over the entire fault system. Our results imply that strain localizes on a single fault at millennial time scale but over longer time scales strain localization is not sustained. The fast millennial slip rate in the absence of historical Mw> 6.5 earthquakes along the Liquine-Ofqui Fault System implies either a component of aseismic slip or Mw similar to 7 earthquakes involving multi-trace ruptures and > 150-year repeat times. Our results have implications for the understanding of strike-slip fault system dynamics within volcanic arcs and seismic hazard assessments. KW - Geodynamics KW - Geomorphology KW - Tectonics Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-85036-5 SN - 2045-2322 VL - 11 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Jara Muñoz, Julius A1 - Melnick, Daniel A1 - Li, Shaoyang A1 - Socquet, Anne A1 - Cortés-Aranda, Joaquín A1 - Brill, Dominik A1 - Strecker, Manfred T1 - The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology JF - Nature Communications N2 - The first step towards assessing hazards in seismically active regions involves mapping capable faults and estimating their recurrence times. While the mapping of active faults is commonly based on distinct geologic and geomorphic features evident at the surface, mapping blind seismogenic faults is complicated by the absence of on-fault diagnostic features. Here we investigated the Pichilemu Fault in coastal Chile, unknown until it generated a Mw 7.0 earthquake in 2010. The lack of evident surface faulting suggests activity along a partly-hidden blind fault. We used off-fault deformed marine terraces to estimate a fault-slip rate of 0.52 ± 0.04 m/ka, which, when integrated with satellite geodesy suggests a 2.12 ± 0.2 ka recurrence time for Mw~7.0 normal-faulting earthquakes. We propose that extension in the Pichilemu region is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes, which has implications for assessing the seismic potential of cryptic faults along convergent margins and elsewhere. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-30754-1 SN - 2041-1723 VL - 13 PB - Springer Nature CY - London ER - TY - JOUR A1 - Jara-Muñoz, Julius A1 - Melnick, Daniel A1 - Li, Shaoyang A1 - Socquet, Anne A1 - Cortés-Aranda, Joaquín A1 - Brill, Dominik A1 - Strecker, Manfred R. T1 - The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology JF - Nature communications N2 - The first step towards assessing hazards in seismically active regions involves mapping capable faults and estimating their recurrence times. While the mapping of active faults is commonly based on distinct geologic and geomorphic features evident at the surface, mapping blind seismogenic faults is complicated by the absence of on-fault diagnostic features. Here we investigated the Pichilemu Fault in coastal Chile, unknown until it generated a Mw 7.0 earthquake in 2010. The lack of evident surface faulting suggests activity along a partly-hidden blind fault. We used off-fault deformed marine terraces to estimate a fault-slip rate of 0.52 +/- 0.04 m/ka, which, when integrated with satellite geodesy suggests a 2.12 +/- 0.2 ka recurrence time for Mw similar to 7.0 normal-faulting earthquakes. We propose that extension in the Pichilemu region is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes, which has implications for assessing the seismic potential of cryptic faults along convergent margins and elsewhere. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-30754-1 SN - 2041-1723 VL - 13 IS - 1 PB - Nature Research CY - Berlin ER -