TY - JOUR A1 - Xu, Yaolin A1 - Dong, Kang A1 - Jie, Yulin A1 - Adelhelm, Philipp A1 - Chen, Yawei A1 - Xu, Liang A1 - Yu, Peiping A1 - Kim, Junghwa A1 - Kochovski, Zdravko A1 - Yu, Zhilong A1 - Li, Wanxia A1 - LeBeau, James A1 - Shao-Horn, Yang A1 - Cao, Ruiguo A1 - Jiao, Shuhong A1 - Cheng, Tao A1 - Manke, Ingo A1 - Lu, Yan T1 - Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives JF - Avanced energy materials N2 - In recent years, due to its great promise in boosting the energy density of lithium batteries for future energy storage, research on the Li metal anode, as an alternative to the graphite anode in Li-ion batteries, has gained significant momentum. However, the practical use of Li metal anodes has been plagued by unstable Li (re)deposition and poor cyclability. Although tremendous efforts have been devoted to the stabilization of Li metal anodes, the mechanisms of electrochemical (re-)deposition/dissolution of Li and solid-electrolyte-interphase (SEI) formation remain elusive. This article highlights the recent mechanistic understandings and observations of Li deposition/dissolution and SEI formation achieved from advanced characterization techniques and simulation methods, and discusses major limitations and open questions in these processes. In particular, the authors provide their perspectives on advanced and emerging/potential methods for obtaining new insights into these questions. In addition, they give an outlook into cutting-edge interdisciplinary research topics for Li metal anodes. It pushes beyond the current knowledge and is expected to accelerate development toward a more in-depth and comprehensive understanding, in order to guide future research on Li metal anodes toward practical application. KW - advanced characterization KW - Li deposition KW - Li dissolution KW - Li metal KW - anodes KW - mechanistic understanding KW - solid-electrolyte-interphase KW - theoretical simulation Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202200398 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 19 PB - Wiley CY - Weinheim ER -