TY - JOUR A1 - Wang, Y. A1 - Herzschuh, Ulrike A1 - Shumilovskikh, L. S. A1 - Mischke, Steffen A1 - Birks, H. John B. A1 - Wischnewski, J. A1 - Böhner, Jürgen A1 - Schluetz, F. A1 - Lehmkuhl, F. A1 - Diekmann, Bernhard A1 - Wuennemann, B. A1 - Zhang, C. T1 - Open Access Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum - extending the concept of pollen source area to pollen-based climate reconstructions from large lakes JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - Pollen records from large lakes have been used for quantitative palaeoclimate reconstruction, but the influences that lake size (as a result of species-specific variations in pollen dispersal patterns that smaller pollen grains are more easily transported to lake centre) and taphonomy have on these climatic signals have not previously been systematically investigated. We introduce the concept of pollen source area to pollen-based climate calibration using the north-eastern Tibetan Plateau as our study area. We present a pollen data set collected from large lakes in the arid to semi-arid region of central Asia. The influences that lake size and the inferred pollen source areas have on pollen compositions have been investigated through comparisons with pollen assemblages in neighbouring lakes of various sizes. Modern pollen samples collected from different parts of Lake Donggi Cona (in the north-eastern part of the Tibetan Plateau) reveal variations in pollen assemblages within this large lake, which are interpreted in terms of the species-specific dispersal and depositional patterns for different types of pollen, and in terms of fluvial input components. We have estimated the pollen source area for each lake individually and used this information to infer modern climate data with which to then develop a modern calibration data set, using both the multivariate regression tree (MRT) and weighted-averaging partial least squares (WA-PLS) approaches. Fossil pollen data from Lake Donggi Cona have been used to reconstruct the climate history of the north-eastern part of the Tibetan Plateau since the Last Glacial Maximum (LGM). The meanannual precipitation was quantitatively reconstructed using WA-PLS: extremely dry conditions are found to have dominated the LGM, with annual precipitation of around 100 mm, which is only 32% of present-day precipitation. A gradually increasing trend in moisture conditions during the Late Glacial is terminated by an abrupt reversion to a dry phase that lasts for about 1000 yr and coincides with "Heinrich event 1" in the North Atlantic region. Subsequent periods corresponding to the Bolling/Allerod interstadial, with annual precipitation (P-ann) of about 350 mm, and the Younger Dryas event (about 270 mm P-ann) are followed by moist conditions in the early Holocene, with annual precipitation of up to 400 mm. A drier trend after 9 cal. ka BP is followed by a second wet phase in the middle Holocene, lasting until 4.5 cal. ka BP. Relatively steady conditions with only slight fluctuations then dominate the late Holocene, resulting in the present climatic conditions. The climate changes since the LGM have been primarily driven by deglaciation and fluctuations in the intensity of the Asian summer monsoon that resulted from changes in the Northern Hemisphere summer solar insolation, as well as from changes in the North Atlantic climate through variations in the circulation patterns and intensity of the westerlies. Y1 - 2014 U6 - https://doi.org/10.5194/cp-10-21-2014 SN - 1814-9324 SN - 1814-9332 VL - 10 IS - 1 SP - 21 EP - 39 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1197 KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525668 SN - 1866-8372 IS - 7 ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Zhang, Shanshan A1 - Hages, Charles J. A1 - Rothhardt, Daniel A1 - Albrecht, Steve A1 - Burn, Paul L. A1 - Meredith, Paul A1 - Unold, Thomas A1 - Neher, Dieter T1 - Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells JF - Nature Energy N2 - The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81%). KW - Energy science and technology KW - Solar cells Y1 - 2018 U6 - https://doi.org/10.1038/s41560-018-0219-8 SN - 2058-7546 VL - 3 IS - 10 SP - 847 EP - 854 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber JF - Solar RRL N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 VL - 4 IS - 7 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Woutersen, Amber A1 - Jardine, Phillip E. A1 - Giovanni Bogota-Angel, Raul A1 - Zhang, Hong-Xiang A1 - Silvestro, Daniele A1 - Antonelli, Alexandre A1 - Gogna, Elena A1 - Erkens, Roy H. J. A1 - Gosling, William D. A1 - Dupont-Nivet, Guillaume A1 - Hoorn, Carina T1 - A novel approach to study the morphology and chemistry of pollen in a phylogenetic context, applied to the halophytic taxon Nitraria L.(Nitrariaceae) JF - PeerJ N2 - Nitraria is a halophytic taxon (i.e., adapted to saline environments) that belongs to the plant family Nitrariaceae and is distributed from the Mediterranean, across Asia into the south-eastern tip of Australia. This taxon is thought to have originated in Asia during the Paleogene (66-23 Ma), alongside the proto-Paratethys epicontinental sea. The evolutionary history of Nitraria might hold important clues on the links between climatic and biotic evolution but limited taxonomic documentation of this taxon has thus far hindered this line of research. Here we investigate if the pollen morphology and the chemical composition of the pollen wall are informative of the evolutionary history of Nitraria and could explain if origination along the proto-Paratethys and dispersal to the Tibetan Plateau was simultaneous or a secondary process. To answer these questions, we applied a novel approach consisting of a combination of Fourier Transform Infrared spectroscopy (FTIR), to determine the chemical composition of the pollen wall, and pollen morphological analyses using Light Microscopy (LM) and Scanning Electron Microscopy (SEM). We analysed our data using ordinations (principal components analysis and non-metric multidimensional scaling), and directly mapped it on the Nitrariaceae phylogeny to produce a phylomorphospace and a phylochemospace. Our LM, SEM and FTIR analyses show clear morphological and chemical differences between the sister groups Peganum and Nitraria. Differences in the morphological and chemical characteristics of highland species (Nitraria schoberi, N. sphaerocarpa, N. sibirica and N. tangutorum) and lowland species (Nitraria billardierei and N. retusa) are very subtle, with phylogenetic history appearing to be a more important control on Nitraria pollen than local environmental conditions. Our approach shows a compelling consistency between the chemical and morphological characteristics of the eight studied Nitrariaceae species, and these traits are in agreement with the phylogenetic tree. Taken together, this demonstrates how novel methods for studying fossil pollen can facilitate the evolutionary investigation of living and extinct taxa, and the environments they represent. KW - FTIR KW - LM KW - SEM KW - Paratethys KW - Tibet KW - Sporopollenin KW - Mediterranean KW - Steppe-desert KW - Australia KW - Palynology Y1 - 2018 U6 - https://doi.org/10.7717/peerj.5055 SN - 2167-8359 VL - 6 PB - PeerJ Inc. CY - London ER -