TY - JOUR A1 - Licht, Alexis A1 - van Cappelle, M. A1 - Abels, Hemmo A. A1 - Ladant, Jean-Baptiste A1 - Trabucho-Alexandre, J. A1 - France-Lanord, C. A1 - Donnadieu, Yannick A1 - Vandenberghe, J. A1 - Rigaudier, T. A1 - Lecuyer, C. A1 - Terry, D. A1 - Adriaens, R. A1 - Boura, A. A1 - Guo, Z. A1 - Soe, Aung Naing A1 - Quade, J. A1 - Dupont-Nivet, Guillaume A1 - Jaeger, J. -J. T1 - Asian monsoons in a late Eocene greenhouse world JF - Nature : the international weekly journal of science N2 - The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34Myrago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago. Y1 - 2014 U6 - https://doi.org/10.1038/nature13704 SN - 0028-0836 SN - 1476-4687 VL - 513 IS - 7519 SP - 501 EP - + PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Quade, Markus A1 - Abel, Markus A1 - Kutz, J. Nathan A1 - Brunton, Steven L. T1 - Sparse identification of nonlinear dynamics for rapid model recovery JF - Chaos : an interdisciplinary journal of nonlinear science N2 - Big data have become a critically enabling component of emerging mathematical methods aimed at the automated discovery of dynamical systems, where first principles modeling may be intractable. However, in many engineering systems, abrupt changes must be rapidly characterized based on limited, incomplete, and noisy data. Many leading automated learning techniques rely on unrealistically large data sets, and it is unclear how to leverage prior knowledge effectively to re-identify a model after an abrupt change. In this work, we propose a conceptual framework to recover parsimonious models of a system in response to abrupt changes in the low-data limit. First, the abrupt change is detected by comparing the estimated Lyapunov time of the data with the model prediction. Next, we apply the sparse identification of nonlinear dynamics (SINDy) regression to update a previously identified model with the fewest changes, either by addition, deletion, or modification of existing model terms. We demonstrate this sparse model recovery on several examples for abrupt system change detection in periodic and chaotic dynamical systems. Our examples show that sparse updates to a previously identified model perform better with less data, have lower runtime complexity, and are less sensitive to noise than identifying an entirely new model. The proposed abrupt-SINDy architecture provides a new paradigm for the rapid and efficient recovery of a system model after abrupt changes. Y1 - 2018 U6 - https://doi.org/10.1063/1.5027470 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 6 PB - American Institute of Physics CY - Melville ER -