TY - JOUR A1 - Kruse, Stefan A1 - Gerdes, Alexander A1 - Kath, Nadja J. A1 - Herzschuh, Ulrike T1 - Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model BT - LAVESI-WIND 1.0 JF - Geoscientific model development : an interactive open access journal of the European Geosciences Union N2 - It is of major interest to estimate the feedback of arctic ecosystems to the global warming we expect in upcoming decades. The speed of this response is driven by the potential of species to migrate, tracking their climate optimum. For this, sessile plants have to produce and disperse seeds to newly available habitats, and pollination of ovules is needed for the seeds to be viable. These two processes are also the vectors that pass genetic information through a population. A restricted exchange among subpopulations might lead to a maladapted population due to diversity losses. Hence, a realistic implementation of these dispersal processes into a simulation model would allow an assessment of the importance of diversity for the migration of plant species in various environments worldwide. To date, dynamic global vegetation models have been optimized for a global application and overestimate the migration of biome shifts in currently warming temperatures. We hypothesize that this is caused by neglecting important fine-scale processes, which are necessary to estimate realistic vegetation trajectories. Recently, we built and parameterized a simulation model LAVESI for larches that dominate the latitudinal treelines in the northernmost areas of Siberia. In this study, we updated the vegetation model by including seed and pollen dispersal driven by wind speed and direction. The seed dispersal is modelled as a ballistic flight, and for the pollination of ovules of seeds produced, we implemented a wind-determined and distance-dependent probability distribution function using a von Mises distribution to select the pollen donor. A local sensitivity analysis of both processes supported the robustness of the model's results to the parameterization, although it highlighted the importance of recruitment and seed dispersal traits for migration rates. This individual-based and spatially explicit implementation of both dispersal processes makes it easily feasible to inherit plant traits and genetic information to assess the impact of migration processes on the genetics. Finally, we suggest how the final model can be applied to substantially help in unveiling the important drivers of migration dynamics and, with this, guide the improvement of recent global vegetation models. Y1 - 2018 U6 - https://doi.org/10.5194/gmd-11-4451-2018 SN - 1991-959X SN - 1991-9603 VL - 11 IS - 11 SP - 4451 EP - 4467 PB - Copernicus CY - Göttingen ER - TY - BOOK A1 - Braun, Uwe A1 - Ale-Agha, Nosratollah A1 - Bolay, Adrien A1 - Boyle, H. A1 - Brielmaier-Liebetanz, U. A1 - Emgenbroich, D. A1 - Kruse, J. A1 - Kummer, Volker T1 - New records of powdery mildew fungi (Erysiphaceae) N2 - The conidial stage and chasmothecia of Golovinomyces orontii have been found in Germany on cultivated Limnanthes douglasii. A powdery mildew anamorph found in the Netherlands on Malva alcea agrees morphologically with the Oidium of the latter species as well. Golovinomyces sp. (anamorph) on Parthenium integrifolium is described and discussed. Erysiphe sp. has been found in Germany on Acer opalus, and E. magnifica is recorded from Germany and Switzerland on Magnolia spp. Oidium passiflorae is new to Switzerland. An Oidium morphologically agreeing with the anamorph of Podosphaera aphanis has recently been collected on Exacum macranthum cultivated in a greenhouse, and conidiophores and conidia of a species of Podosphaera sect. Sphaerotheca subsect. Magnicellulatae (P. fusca complex) on Phlox paniculata and Polemonium caeruleum have been found in Germany. Y1 - 2009 ER - TY - JOUR A1 - Epp, Laura Saskia A1 - Kruse, Stefan A1 - Kath, Nadja J. A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Tiedemann, Ralph A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling JF - Scientific reports N2 - Changes in species’ distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species’ range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-35550-w SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Kruse, Stefan A1 - Gerdes, Alexander A1 - Kath, Nadja J. A1 - Herzschuh, Ulrike T1 - Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model BT - LAVESI-WIND 1.0 T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - It is of major interest to estimate the feedback of arctic ecosystems to the global warming we expect in upcoming decades. The speed of this response is driven by the potential of species to migrate, tracking their climate optimum. For this, sessile plants have to produce and disperse seeds to newly available habitats, and pollination of ovules is needed for the seeds to be viable. These two processes are also the vectors that pass genetic information through a population. A restricted exchange among subpopulations might lead to a maladapted population due to diversity losses. Hence, a realistic implementation of these dispersal processes into a simulation model would allow an assessment of the importance of diversity for the migration of plant species in various environments worldwide. To date, dynamic global vegetation models have been optimized for a global application and overestimate the migration of biome shifts in currently warming temperatures. We hypothesize that this is caused by neglecting important fine-scale processes, which are necessary to estimate realistic vegetation trajectories. Recently, we built and parameterized a simulation model LAVESI for larches that dominate the latitudinal treelines in the northernmost areas of Siberia. In this study, we updated the vegetation model by including seed and pollen dispersal driven by wind speed and direction. The seed dispersal is modelled as a ballistic flight, and for the pollination of ovules of seeds produced, we implemented a wind-determined and distance-dependent probability distribution function using a von Mises distribution to select the pollen donor. A local sensitivity analysis of both processes supported the robustness of the model's results to the parameterization, although it highlighted the importance of recruitment and seed dispersal traits for migration rates. This individual-based and spatially explicit implementation of both dispersal processes makes it easily feasible to inherit plant traits and genetic information to assess the impact of migration processes on the genetics. Finally, we suggest how the final model can be applied to substantially help in unveiling the important drivers of migration dynamics and, with this, guide the improvement of recent global vegetation models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 929 KW - long-distance dispersal KW - climate-change KW - genetic-structure KW - plant migration KW - larix-sibirica KW - DNA variation KW - large-scale KW - vegetation KW - landscape KW - future Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445978 SN - 1866-8372 IS - 929 SP - 4451 EP - 4467 ER - TY - JOUR A1 - Kruse, Stefan A1 - Gerdes, Alexander A1 - Kath, Nadja J. A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Dispersal distances and migration rates at the arctic treeline in Siberia - a genetic and simulation-based study JF - Biogeosciences N2 - A strong temperature increase in the Arctic is expected to lead to latitudinal treeline shift. This tundra-taiga turnover would cause a positive vegetation-climate feedback due to albedo decrease. However, reliable estimates of tree migration rates are currently lacking due to the complex processes involved in forest establishment, which depend strongly on seed dispersal. We aim to fill this gap using LAVESI, an individual-based and spatially explicit Larix vegetation simulator. LAVESI was designed to simulate plots within homogeneous forests. Here, we improve the implementation of the seed dispersal function via field-based investigations. We inferred the effective seed dispersal distances of a typical open-forest stand on the southern Taymyr Peninsula (northern central Siberia) from genetic parentage analysis using eight nuclear microsatellite markers. The parentage analysis gives effective seed dispersal distances (median similar to 10 m) close to the seed parents. A comparison between simulated and observed effective seed dispersal distances reveals an overestimation of recruits close to the releasing tree and a shorter dispersal distance generally. We thus adapted our model and used the newly parameterised version to simulate south-to-north transects; a slow-moving treeline front was revealed. The colonisation of the tundra areas was assisted by occasional long-distance seed dispersal events beyond the treeline area. The treeline (similar to 1 tree ha(-1)) advanced by similar to 1.6 m yr(-1), whereas the forest line (similar to 100 trees ha(-1)) advanced by only similar to 0.6 m yr(-1). We conclude that the treeline in northern central Siberia currently lags behind the current strong warming and will continue to lag in the near future. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-1211-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 6 SP - 1211 EP - 1224 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Böhmer, Thomas A1 - Li, Chenzhi A1 - Cao, Xianyong A1 - Hébert, Raphaël A1 - Dallmeyer, Anne A1 - Telford, Richard J. A1 - Kruse, Stefan T1 - Reversals in temperature-precipitation correlations in the Northern Hemisphere extratropics during the Holocene JF - Geophysical research letters N2 - Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature-precipitation correlations. Our analyses of Holocene proxy-based temperature-precipitation correlations and hydrological sensitivities from 2,237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy-based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid-latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature-precipitation correlations in the eastern North American and European mid-latitudes from the early to mid-Holocene that mainly related to slowed down westerlies and a switch to moisture-limited convection under a warm climate. Our palaeoevidence of past temperature-precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging. Y1 - 2022 U6 - https://doi.org/10.1029/2022GL099730 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 22 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Epp, Laura Saskia A1 - Kruse, Stefan A1 - Kath, Nadja J. A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Tiedemann, Ralph A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1052 KW - ecological genetics KW - ecological modelling KW - palaeoecology KW - plant ecology KW - climate change KW - introgression KW - temperature KW - treeline KW - vegetation KW - mitochondrial haplotypes KW - Siberian larch KW - larch species KW - range shifts KW - vegetation-climate feedbacks KW - ecosystems KW - impacts KW - dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468352 SN - 1866-8372 IS - 1052 ER -