TY - GEN A1 - Limberger, Daniel A1 - Gropler, Anne A1 - Buschmann, Stefan A1 - Döllner, Jürgen Roland Friedrich A1 - Wasty, Benjamin T1 - OpenLL BT - an API for Dynamic 2D and 3D Labeling T2 - 22nd International Conference Information Visualisation (IV) N2 - Today's rendering APIs lack robust functionality and capabilities for dynamic, real-time text rendering and labeling, which represent key requirements for 3D application design in many fields. As a consequence, most rendering systems are barely or not at all equipped with respective capabilities. This paper drafts the unified text rendering and labeling API OpenLL intended to complement common rendering APIs, frameworks, and transmission formats. For it, various uses of static and dynamic placement of labels are showcased and a text interaction technique is presented. Furthermore, API design constraints with respect to state-of-the-art text rendering techniques are discussed. This contribution is intended to initiate a community-driven specification of a free and open label library. KW - visualization KW - labeling KW - real-time rendering Y1 - 2018 SN - 978-1-5386-7202-0 U6 - https://doi.org/10.1109/iV.2018.00039 SP - 175 EP - 181 PB - IEEE CY - New York ER - TY - JOUR A1 - Semmo, Amir A1 - Limberger, Daniel A1 - Kyprianidis, Jan Eric A1 - Döllner, Jürgen Roland Friedrich T1 - Image stylization by interactive oil paint filtering JF - Ricerche di Storia Politica N2 - This paper presents an interactive system for transforming images into an oil paint look. The system comprises two major stages. First, it derives dominant colors from an input image for feature-aware recolorization and quantization to conform with a global color palette. Afterwards, it employs non-linear filtering based on the smoothed structure adapted to the main feature contours of the quantized image to synthesize a paint texture in real-time. Our filtering approach leads to homogeneous outputs in the color domain and enables creative control over the visual output, such as color adjustments and per-pixel parametrizations by means of interactive painting. To this end, our system introduces a generalized brush-based painting interface that operates within parameter spaces to locally adjust the level of abstraction of the filtering effects. Several results demonstrate the various applications of our filtering approach to different genres of photography. (C) 2015 Elsevier Ltd. All rights reserved. KW - Oil paint filtering KW - Artistic rendering KW - Colorization KW - Image flow KW - Interactive painting Y1 - 2016 U6 - https://doi.org/10.1016/j.cag.2015.12.001 SN - 0097-8493 SN - 1873-7684 VL - 55 SP - 157 EP - 171 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Scheibel, Willy A1 - Trapp, Matthias A1 - Limberger, Daniel A1 - Döllner, Jürgen Roland Friedrich T1 - A taxonomy of treemap visualization techniques JF - Science and Technology Publications N2 - A treemap is a visualization that has been specifically designed to facilitate the exploration of tree-structured data and, more general, hierarchically structured data. The family of visualization techniques that use a visual metaphor for parent-child relationships based “on the property of containment” (Johnson, 1993) is commonly referred to as treemaps. However, as the number of variations of treemaps grows, it becomes increasingly important to distinguish clearly between techniques and their specific characteristics. This paper proposes to discern between Space-filling Treemap TS, Containment Treemap TC, Implicit Edge Representation Tree TIE, and Mapped Tree TMT for classification of hierarchy visualization techniques and highlights their respective properties. This taxonomy is created as a hyponymy, i.e., its classes have an is-a relationship to one another: TS TC TIE TMT. With this proposal, we intend to stimulate a discussion on a more unambiguous classification of treemaps and, furthermore, broaden what is understood by the concept of treemap itself. KW - Treemaps KW - Taxonomy Y1 - 2020 PB - Springer CY - Berlin ER - TY - GEN A1 - Limberger, Daniel A1 - Scheibel, Willy A1 - Trapp, Matthias A1 - Döllner, Jürgen Roland Friedrich T1 - Mixed-projection treemaps BT - a novel approach mixing 2D and 2.5D treemaps T2 - 21st International Conference Information Visualisation (IV) N2 - This paper presents a novel technique for combining 2D and 2.5D treemaps using multi-perspective views to leverage the advantages of both treemap types. It enables a new form of overview+detail visualization for tree-structured data and contributes new concepts for real-time rendering of and interaction with treemaps. The technique operates by tilting the graphical elements representing inner nodes using affine transformations and animated state transitions. We explain how to mix orthogonal and perspective projections within a single treemap. Finally, we show application examples that benefit from the reduced interaction overhead. KW - Information Visualization KW - Overview plus Detail KW - Treemaps KW - 2.5D Treemaps KW - Multi-perspective Views Y1 - 2017 SN - 978-1-5386-0831-9 U6 - https://doi.org/10.1109/iV.2017.67 SN - 2375-0138 SP - 164 EP - 169 PB - Institute of Electrical and Electronics Engineers CY - Los Alamitos ER - TY - GEN A1 - Scheibel, Willy A1 - Trapp, Matthias A1 - Limberger, Daniel A1 - Döllner, Jürgen Roland Friedrich T1 - A taxonomy of treemap visualization techniques T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - A treemap is a visualization that has been specifically designed to facilitate the exploration of tree-structured data and, more general, hierarchically structured data. The family of visualization techniques that use a visual metaphor for parent-child relationships based “on the property of containment” (Johnson, 1993) is commonly referred to as treemaps. However, as the number of variations of treemaps grows, it becomes increasingly important to distinguish clearly between techniques and their specific characteristics. This paper proposes to discern between Space-filling Treemap TS, Containment Treemap TC, Implicit Edge Representation Tree TIE, and Mapped Tree TMT for classification of hierarchy visualization techniques and highlights their respective properties. This taxonomy is created as a hyponymy, i.e., its classes have an is-a relationship to one another: TS TC TIE TMT. With this proposal, we intend to stimulate a discussion on a more unambiguous classification of treemaps and, furthermore, broaden what is understood by the concept of treemap itself. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 8 KW - treemaps KW - taxonomy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524693 IS - 8 ER -