TY - JOUR A1 - Gohlke, Sabrina A1 - Zagoriy, Vyacheslav A1 - Inostroza, Alvaro Cuadros A1 - Meret, Michael A1 - Mancini, Carola A1 - Japtok, Lukasz A1 - Schumacher, Fabian A1 - Kuhlow, Doreen A1 - Graja, Antonia A1 - Stephanowitz, Heike A1 - Jähnert, Markus A1 - Krause, Eberhard A1 - Wernitz, Andreas A1 - Petzke, Klaus-Juergen A1 - Schürmann, Annette A1 - Kleuser, Burkhard A1 - Schulz, Tim Julius T1 - Identification of functional lipid metabolism biomarkers of brown adipose tissue aging JF - Molecular Metabolism N2 - Objective: Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. Methods: Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. Results: Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. Conclusions: Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions. KW - Brown adipose tissue KW - Aging KW - Ceramides KW - Sphingolipids KW - Dolichol lipids Y1 - 2019 U6 - https://doi.org/10.1016/j.molmet.2019.03.011 SN - 2212-8778 VL - 24 SP - 1 EP - 17 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jose Clemente-Moreno, Maria A1 - Omranian, Nooshin A1 - Saez, Patricia A1 - Maria Figueroa, Carlos A1 - Del-Saz, Nestor A1 - Elso, Mhartyn A1 - Poblete, Leticia A1 - Orf, Isabel A1 - Cuadros-Inostroza, Alvaro A1 - Cavieres, Lohengrin A1 - Bravo, Leon A1 - Fernie, Alisdair R. A1 - Ribas-Carbo, Miquel A1 - Flexas, Jaume A1 - Nikoloski, Zoran A1 - Brotman, Yariv A1 - Gago, Jorge T1 - Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis JF - New phytologist : international journal of plant science N2 - Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23 degrees C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88%) but not in respiration (sustaining rates of 3.0-4.2 mu mol CO2 m(-2) s(-1)) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature. KW - Antarctica KW - antioxidant capacity KW - low temperature KW - photosynthesis KW - respiration KW - stress tolerance KW - sulphur metabolism Y1 - 2019 U6 - https://doi.org/10.1111/nph.16167 SN - 0028-646X SN - 1469-8137 VL - 225 IS - 2 SP - 754 EP - 768 PB - Wiley CY - Hoboken ER -