TY - GEN A1 - Beermann, Jan A1 - Westbury, Michael V. A1 - Hofreiter, Michael A1 - Hilgers, Leon A1 - Deister, Fabian A1 - Neumann, Hermann A1 - Raupach, Michael J. T1 - Cryptic species in a well-known habitat BT - applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1059 KW - multiple sequence alignment KW - Oxidase Subunit-I KW - mitochondrial genome KW - control region KW - Ribosomal-RNA KW - asellota crustacea KW - gammarus crustacea KW - deep-sea KW - DNA KW - evolution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-460792 SN - 1866-8372 IS - 1059 ER - TY - GEN A1 - Westbury, Michael V. A1 - Baleka, Sina Isabelle A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Paijmans, Johanna L. A. A1 - Kramarz, Alejandro A1 - Forasiepi, Analía M. A1 - Bond, Mariano A1 - Gelfo, Javier N. A1 - Reguero, Marcelo A. A1 - López-Mendoza, Patricio A1 - Taglioretti, Matias A1 - Scaglia, Fernando A1 - Rinderknecht, Andrés A1 - Jones, Washington A1 - Mena, Francisco A1 - Billet, Guillaume A1 - de Muizon, Christian A1 - Aguilar, José Luis A1 - MacPhee, Ross D.E. A1 - Hofreiter, Michael T1 - A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 793 KW - ancient DNA KW - evolutionary history KW - genome sequence KW - reveals KW - contamination KW - alignment KW - reads KW - bones Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440801 SN - 1866-8372 IS - 793 ER - TY - GEN A1 - Westbury, Michael V. A1 - Hartmann, Stefanie A1 - Barlow, Axel A1 - Wiesel, Ingrid A1 - Leo, Viyanna A1 - Welch, Rebecca A1 - Parker, Daniel M. A1 - Sicks, Florian A1 - Ludwig, Arne A1 - Dalen, Love A1 - Hofreiter, Michael T1 - Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 589 KW - evolution KW - hyena KW - genomics KW - population genomics KW - diversity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414132 SN - 1866-8372 IS - 589 ER - TY - GEN A1 - Folkertsma, Remco A1 - Westbury, Michael V. A1 - Eccard, Jana A1 - Hofreiter, Michael T1 - The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The common vole, Microtus arvalis belongs to the genus Microtus in the subfamily Arvicolinae. In this study, the complete mitochondrial genome of M. arvalis was recovered using shotgun sequencing and an iterative mapping approach using three related species. Phylogenetic analyses using the sequence of 21 arvicoline species place the common vole as a sister species to the East European vole (Microtus levis), but as opposed to previous results we find no support for the recognition of the genus Neodon within the subfamily Arvicolinae, as this is, as well as the genus Lasiopodomys, found within the Microtus genus. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 481 KW - Microtus arvalis KW - Arvicolinae KW - mitochondrial genome KW - common vole KW - phylogeny Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412994 SN - 1866-8372 IS - 481 ER -