TY - JOUR A1 - Sturm, R. A1 - Haberl, F. A1 - Oskinova, Lida A1 - Schurch, M. P. E. A1 - Henault-Brunet, V. A1 - Gallagher, J. S. A1 - Udalski, A. T1 - Long-term evolution of the neutron-star spin period of SXP1062 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The Be/X-ray binary SXP 1062 is of especial interest owing to the large spin period of the neutron star, its large spin-down rate, and the association with a supernova remnant constraining its age. This makes the source an important probe for accretion physics. Aims. To investigate the long-term evolution of the spin period and associated spectral variations, we performed an XMM-Newton target-of-opportunity observation of SXP 1062 during X-ray outburst. Methods. Spectral and timing analysis of the XMM-Newton data was compared with previous studies, as well as complementary Swift/XRT monitoring and optical spectroscopy with the SALT telescope were obtained. Results. The spin period was measured to be P-s = (1071.01 +/- 0.16) s on 2012 Oct. 14. The X-ray spectrum is similar to that of previous observations. No convincing cyclotron absorption features, which could be indicative for a high magnetic field strength, are found. The high-resolution RGS spectra indicate the presence of emission lines, which may not completely be accounted for by the SNR emission. The comparison of multi-epoch optical spectra suggest an increasing size or density of the decretion disc around the Be star. Conclusions. SXP 1062 showed a net spin-down with an average of P-s = ( 2.27 +/- 0.44) s yr(-1) over a baseline of 915 days. KW - pulsars: individual: SXP1062 KW - galaxies: individual: Small Magellanic Cloud KW - stars: emission-line, Be KW - stars: neutron KW - X-rays: binaries Y1 - 2013 U6 - https://doi.org/10.1051/0004-6361/201321755 SN - 0004-6361 VL - 556 IS - 4 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Almeida, Leonardo A. A1 - Sana, H. A1 - Taylor, W. A1 - Barbá, Rodolfo A1 - Bonanos, Alceste Z. A1 - Crowther, Paul A1 - Damineli, Augusto A1 - de Koter, A. A1 - de Mink, Selma E. A1 - Evans, C. J. A1 - Gieles, Mark A1 - Grin, Nathan J. A1 - Hénault-Brunet, V. A1 - Langer, Norbert A1 - Lennon, D. A1 - Lockwood, Sean A1 - Maíz Apellániz, Jesús A1 - Moffat, A. F. J. A1 - Neijssel, C. A1 - Norman, C. A1 - Ramírez-Agudelo, O. H. A1 - Richardson, N. D. A1 - Schootemeijer, Abel A1 - Shenar, Tomer A1 - Soszyński, Igor A1 - Tramper, Frank A1 - Vink, J. S. T1 - The tarantula massive binary monitoring BT - I. Observational campaign and OB-type spectroscopic binaries JF - Astronomy and astrophysics : an international weekly journal N2 - Context: Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus’s core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2–O7) tend to have shorter orbital periods than later spectral types (O9.2–O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe’s peak of star formation at redshifts z ~ 1 to 2 which are estimated to have Z ~ 0.5 Z⊙. KW - stars: early-type KW - stars: massive KW - binaries: spectroscopic KW - binaries: close Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629844 SN - 1432-0746 VL - 598 PB - EDP Sciences CY - Les Ulis ER -