TY - JOUR A1 - Ayllon, Daniel A1 - Grimm, Volker A1 - Attinger, Sabine A1 - Hauhs, Michael A1 - Simmer, Clemens A1 - Vereecken, Harry A1 - Lischeid, Gunnar T1 - Cross-disciplinary links in environmental systems science BT - Current state and claimed needs identified in a meta-review of process models JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model inter-comparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. (c) 2017 Elsevier B.V. All rights reserved. KW - Review KW - Interdisciplinary links KW - Integrated environmental modelling KW - Research needs Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2017.12.007 SN - 0048-9697 SN - 1879-1026 VL - 622 SP - 954 EP - 973 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Groh, Jannis A1 - Diamantopoulos, Efstathios A1 - Duan, Xiaohong A1 - Ewert, Frank A1 - Heinlein, Florian A1 - Herbst, Michael A1 - Holbak, Maja A1 - Kamali, Bahareh A1 - Kersebaum, Kurt-Christian A1 - Kuhnert, Matthias A1 - Nendel, Claas A1 - Priesack, Eckart A1 - Steidl, Jörg A1 - Sommer, Michael A1 - Pütz, Thomas A1 - Vanderborght, Jan A1 - Vereecken, Harry A1 - Wallor, Evelyn A1 - Weber, Tobias K. D. A1 - Wegehenkel, Martin A1 - Weihermüller, Lutz A1 - Gerke, Horst H. T1 - Same soil, different climate: Crop model intercomparison on translocated lysimeters JF - Vadose zone journal N2 - Crop model intercomparison studies have mostly focused on the assessment of predictive capabilities for crop development using weather and basic soil data from the same location. Still challenging is the model performance when considering complex interrelations between soil and crop dynamics under a changing climate. The objective of this study was to test the agronomic crop and environmental flux-related performance of a set of crop models. The aim was to predict weighing lysimeter-based crop (i.e., agronomic) and water-related flux or state data (i.e., environmental) obtained for the same soil monoliths that were taken from their original environment and translocated to regions with different climatic conditions, after model calibration at the original site. Eleven models were deployed in the study. The lysimeter data (2014-2018) were from the Dedelow (Dd), Bad Lauchstadt (BL), and Selhausen (Se) sites of the TERENO (TERrestrial ENvironmental Observatories) SOILCan network. Soil monoliths from Dd were transferred to the drier and warmer BL site and the wetter and warmer Se site, which allowed a comparison of similar soil and crop under varying climatic conditions. The model parameters were calibrated using an identical set of crop- and soil-related data from Dd. Environmental fluxes and crop growth of Dd soil were predicted for conditions at BL and Se sites using the calibrated models. The comparison of predicted and measured data of Dd lysimeters at BL and Se revealed differences among models. At site BL, the crop models predicted agronomic and environmental components similarly well. Model performance values indicate that the environmental components at site Se were better predicted than agronomic ones. The multi-model mean was for most observations the better predictor compared with those of individual models. For Se site conditions, crop models failed to predict site-specific crop development indicating that climatic conditions (i.e., heat stress) were outside the range of variation in the data sets considered for model calibration. For improving predictive ability of crop models (i.e., productivity and fluxes), more attention should be paid to soil-related data (i.e., water fluxes and system states) when simulating soil-crop-climate interrelations in changing climatic conditions. Y1 - 2022 U6 - https://doi.org/10.1002/vzj2.20202 SN - 1539-1663 VL - 21 IS - 4 PB - Wiley CY - Hoboken ER -