TY - JOUR A1 - van Rees, Charles B. A1 - Waylen, Kerry A. A1 - Schmidt-Kloiber, Astrid A1 - Thackeray, Stephen J. A1 - Kalinkat, Gregor A1 - Martens, Koen A1 - Domisch, Sami A1 - Lillebo, Ana A1 - Hermoso, Virgilio A1 - Grossart, Hans-Peter A1 - Schinegger, Rafaela A1 - Decleer, Kris A1 - Adriaens, Tim A1 - Denys, Luc A1 - Jaric, Ivan A1 - Janse, Jan H. A1 - Monaghan, Michael T. A1 - De Wever, Aaike A1 - Geijzendorffer, Ilse A1 - Adamescu, Mihai C. A1 - Jähnig, Sonja C. T1 - Safeguarding freshwater life beyond 2020 BT - recommendations for the new global biodiversity framework from the European experience JF - Conservation letters N2 - Plans are currently being drafted for the next decade of action on biodiversity-both the post-2020 Global Biodiversity Framework of the Convention on Biological Diversity (CBD) and Biodiversity Strategy of the European Union (EU). Freshwater biodiversity is disproportionately threatened and underprioritized relative to the marine and terrestrial biota, despite supporting a richness of species and ecosystems with their own intrinsic value and providing multiple essential ecosystem services. Future policies and strategies must have a greater focus on the unique ecology of freshwater life and its multiple threats, and now is a critical time to reflect on how this may be achieved. We identify priority topics including environmental flows, water quality, invasive species, integrated water resources management, strategic conservation planning, and emerging technologies for freshwater ecosystem monitoring. We synthesize these topics with decades of first-hand experience and recent literature into 14 special recommendations for global freshwater biodiversity conservation based on the successes and setbacks of European policy, management, and research. Applying and following these recommendations will inform and enhance the ability of global and European post-2020 biodiversity agreements to halt and reverse the rapid global decline of freshwater biodiversity. KW - climate change KW - conservation KW - ecosystem services KW - rivers KW - sustainable KW - development goals KW - water resources KW - wetlands Y1 - 2020 U6 - https://doi.org/10.1111/conl.12771 SN - 1755-263X VL - 14 IS - 1 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ilicic, Doris A1 - Woodhouse, Jason A1 - Karsten, Ulf A1 - Zimmermann, Jonas A1 - Wichard, Thomas A1 - Quartino, Maria Liliana A1 - Campana, Gabriela Laura A1 - Livenets, Alexandra A1 - Van den Wyngaert, Silke A1 - Grossart, Hans-Peter T1 - Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones JF - Frontiers in microbiology N2 - Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota. KW - Antarctica KW - aquatic fungi KW - Chytridiomycota KW - phytoplankton host KW - salinity gradient KW - Illumina amplicon sequencing KW - Carlini Station Y1 - 2022 U6 - https://doi.org/10.3389/fmicb.2022.805694 SN - 1664-302X IS - 13 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Ilicic, Doris A1 - Woodhouse, Jason A1 - Karsten, Ulf A1 - Zimmermann, Jonas A1 - Wichard, Thomas A1 - Quartino, Maria Liliana A1 - Campana, Gabriela Laura A1 - Livenets, Alexandra A1 - Van den Wyngaert, Silke A1 - Grossart, Hans-Peter T1 - Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1290 KW - Antarctica KW - aquatic fungi KW - Chytridiomycota KW - phytoplankton host KW - salinity gradient KW - Illumina amplicon sequencing KW - Carlini Station Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-572895 SN - 1866-8372 IS - 1290 ER - TY - JOUR A1 - Ilicic, Doris A1 - Grossart, Hans-Peter T1 - Basal parasitic fungi in marine food webs-a mystery yet to unravel JF - Journal of Fungi N2 - Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research. KW - basal fungi KW - parasites KW - Chytridiomycota KW - Rozellomycota KW - food web KW - biological carbon pump Y1 - 2022 U6 - https://doi.org/10.3390/jof8020114 SN - 2309-608X VL - 8 IS - 2 PB - MDPI CY - Basel ER - TY - GEN A1 - Göritz, Anna A1 - Berger, Stella A. A1 - Gege, Peter A1 - Grossart, Hans-Peter A1 - Nejstgaard, Jens C. A1 - Riedel, Sebastian A1 - Röttgers, Rüdiger A1 - Utschig, Christian T1 - Retrieval of water constituents from hyperspectral in-situ measurements under variable cloud cover BT - a case study at lake Stechlin (Germany) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Remote sensing and field spectroscopy of natural waters is typically performed under clear skies, low wind speeds and low solar zenith angles. Such measurements can also be made, in principle, under clouds and mixed skies using airborne or in-situ measurements; however, variable illumination conditions pose a challenge to data analysis. In the present case study, we evaluated the inversion of hyperspectral in-situ measurements for water constituent retrieval acquired under variable cloud cover. First, we studied the retrieval of Chlorophyll-a (Chl-a) concentration and colored dissolved organic matter (CDOM) absorption from in-water irradiance measurements. Then, we evaluated the errors in the retrievals of the concentration of total suspended matter (TSM), Chl-a and the absorption coefficient of CDOM from above-water reflectance measurements due to highly variable reflections at the water surface. In order to approximate cloud reflections, we extended a recent three-component surface reflectance model for cloudless atmospheres by a constant offset and compared different surface reflectance correction procedures. Our findings suggest that in-water irradiance measurements may be used for the analysis of absorbing compounds even under highly variable weather conditions. The extended surface reflectance model proved to contribute to the analysis of above-water reflectance measurements with respect to Chl-a and TSM. Results indicate the potential of this approach for all-weather monitoring. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 941 KW - remote sensing KW - inland water KW - hyperspectral measurements KW - in-situ KW - cloud KW - surface reflection KW - inversion KW - bio-optical modeling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459837 SN - 1866-8372 IS - 941 ER - TY - GEN A1 - Rojas-Jimenez, Keilor A1 - Grossart, Hans-Peter A1 - Cordes, Erik A1 - Cortés, Jorge T1 - Fungal Communities in Sediments Along a Depth Gradient in the Eastern Tropical Pacific T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Deep waters represent the largest biome on Earth and the largest ecosystem of Costa Rica. Fungi play a fundamental role in global biogeochemical cycling in marine sediments, yet, they remain little explored. We studied fungal diversity and community composition in several marine sediments from 16 locations sampled along a bathymetric gradient (from a depth of 380 to 3,474 m) in two transects of about 1,500 km length in the Eastern Tropical Pacific (ETP) of Costa Rica. Sequence analysis of the V7-V8 region of the 18S rRNA gene obtained from sediment cores revealed the presence of 787 fungal amplicon sequence variants (ASVs). On average, we detected a richness of 75 fungal ASVs per sample. Ascomycota represented the most abundant phylum with Saccharomycetes constituting the dominant class. Three ASVs accounted for ca. 63% of all fungal sequences: the yeast Metschnikowia (49.4%), Rhizophydium (6.9%), and Cladosporium (6.7%). We distinguished a cluster composed mainly by yeasts, and a second cluster by filamentous fungi, but we were unable to detect a strong effect of depth and the overlying water temperature, salinity, dissolved oxygen (DO), and pH on the composition of fungal communities. We highlight the need to understand further the ecological role of fungi in deep-sea ecosystems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1013 KW - deep-sea KW - aquatic fungi KW - biodiversity KW - Metschnikowia KW - Costa Rica Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482360 SN - 1866-8372 IS - 1013 ER - TY - GEN A1 - Perkins, Anita A1 - Rose, Andrew A1 - Grossart, Hans-Peter A1 - Rojas-Jimenez, Keilor Osvaldo A1 - Barroso Prescott, Selva Kiri A1 - Oakes, Joanne M. T1 - Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cellulose and chitin are the most abundant polymeric, organic carbon source globally. Thus, microbes degrading these polymers significantly influence global carbon cycling and greenhouse gas production. Fungi are recognized as important for cellulose decomposition in terrestrial environments, but are far less studied in marine environments, where bacterial organic matter degradation pathways tend to receive more attention. In this study, we investigated the potential of fungi to degrade kelp detritus, which is a major source of cellulose in marine systems. Given that kelp detritus can be transported considerable distances in the marine environment, we were specifically interested in the capability of endophytic fungi, which are transported with detritus, to ultimately contribute to kelp detritus degradation. We isolated 10 species and two strains of endophytic fungi from the kelp Ecklonia radiata. We then used a dye decolorization assay to assess their ability to degrade organic polymers (lignin, cellulose, and hemicellulose) under both oxic and anoxic conditions and compared their degradation ability with common terrestrial fungi. Under oxic conditions, there was evidence that Ascomycota isolates produced cellulose-degrading extracellular enzymes (associated with manganese peroxidase and sulfur-containing lignin peroxidase), while Mucoromycota isolates appeared to produce both lignin and cellulose-degrading extracellular enzymes, and all Basidiomycota isolates produced lignin-degrading enzymes (associated with laccase and lignin peroxidase). Under anoxic conditions, only three kelp endophytes degraded cellulose. We concluded that kelp fungal endophytes can contribute to cellulose degradation in both oxic and anoxic environments. Thus, endophytic kelp fungi may play a significant role in marine carbon cycling via polymeric organic matter degradation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1246 KW - kelp KW - fungi KW - endophytes KW - carbon cycling KW - extracellular enzymes KW - cellulose polymeric organic matter Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-550520 SN - 1866-8372 VL - 12 SP - 1 EP - 13 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Cuadrat, Rafael R. C. A1 - Ionescu, Danny A1 - Dávila, Alberto M. R. A1 - Grossart, Hans-Peter T1 - Recovering genomics clusters of secondary metabolites from lakes using genome-resolved metagenomics T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Metagenomic approaches became increasingly popular in the past decades due to decreasing costs of DNA sequencing and bioinformatics development. So far, however, the recovery of long genes coding for secondary metabolites still represents a big challenge. Often, the quality of metagenome assemblies is poor, especially in environments with a high microbial diversity where sequence coverage is low and complexity of natural communities high. Recently, new and improved algorithms for binning environmental reads and contigs have been developed to overcome such limitations. Some of these algorithms use a similarity detection approach to classify the obtained reads into taxonomical units and to assemble draft genomes. This approach, however, is quite limited since it can classify exclusively sequences similar to those available (and well classified) in the databases. In this work, we used draft genomes from Lake Stechlin, north-eastern Germany, recovered by MetaBat, an efficient binning tool that integrates empirical probabilistic distances of genome abundance, and tetranucleotide frequency for accurate metagenome binning. These genomes were screened for secondary metabolism genes, such as polyketide synthases (PKS) and non-ribosomal peptide synthases (NRPS), using the Anti-SMASH and NAPDOS workflows. With this approach we were able to identify 243 secondary metabolite clusters from 121 genomes recovered from our lake samples. A total of 18 NRPS, 19 PKS, and 3 hybrid PKS/NRPS clusters were found. In addition, it was possible to predict the partial structure of several secondary metabolite clusters allowing for taxonomical classifications and phylogenetic inferences. Our approach revealed a high potential to recover and study secondary metabolites genes from any aquatic ecosystem. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 924 KW - metagenomics 2.0 KW - PKS KW - NRPS KW - freshwater KW - environmental genomics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445656 SN - 1866-8372 IS - 924 ER - TY - JOUR A1 - Attermeyer, Katrin A1 - Hornick, T. A1 - Kayler, Z. E. A1 - Bahr, A. A1 - Zwirnmann, E. A1 - Grossart, Hans-Peter A1 - Premke, K. T1 - Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition JF - Biogeosciences N2 - Dissolved organic carbon (DOC) concentrations - mainly of terrestrial origin - are increasing worldwide in inland waters. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (C-13-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (phytoplankton lysate). We then determined bacterial C consumption, activities, and community composition together with the C flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and low-and high-molecular-weight substance fractions (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. Both DOC sources (allochthonous and autochthonous DOC) were metabolized at a high bacterial growth efficiency (BGE) around 50%. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption of up to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substance (HS) fraction and an increase in bacterial biomass. Changes in DOC concentration and consumption in mixed treatments did not affect bacterial community composition (BCC), but BCC differed in single vs. mixed incubations. Our study highlights that DOC quantity affects bacterial C consumption but not BCC in nutrient-rich aquatic systems. BCC shifted when a mixture of allochthonous and autochthonous C was provided simultaneously to the bacterial community. Our results indicate that chemical quality rather than source of DOC per se (allochthonous vs. autochthonous) determines bacterial DOC turnover. Y1 - 2014 U6 - https://doi.org/10.5194/bg-11-1479-2014 SN - 1726-4170 SN - 1726-4189 VL - 11 IS - 6 SP - 1479 EP - 1489 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - McGinnis, Daniel F. A1 - Flury, Sabine A1 - Tang, Kam W. A1 - Grossart, Hans-Peter T1 - Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp. BT - an energetic advantage JF - Scientific reports N2 - Diurnally-migrating Chaoborus spp. reach populations of up to 130,000 individuals m−2 in lakes up to 70 meters deep on all continents except Antarctica. Linked to eutrophication, migrating Chaoborus spp. dwell in the anoxic sediment during daytime and feed in the oxic surface layer at night. Our experiments show that by burrowing into the sediment, Chaoborus spp. utilize the high dissolved gas partial pressure of sediment methane to inflate their tracheal sacs. This mechanism provides a significant energetic advantage that allows the larvae to migrate via passive buoyancy rather than more energy-costly swimming. The Chaoborus spp. larvae, in addition to potentially releasing sediment methane bubbles twice a day by entering and leaving the sediment, also transport porewater methane within their gas vesicles into the water column, resulting in a flux of 0.01–2 mol m−2 yr−1 depending on population density and water depth. Chaoborus spp. emerging annually as flies also result in 0.1–6 mol m−2 yr−1 of carbon export from the system. Finding the tipping point in lake eutrophication enabling this methane-powered migration mechanism is crucial for ultimately reconstructing the geographical expansion of Chaoborus spp., and the corresponding shifts in the lake’s biogeochemistry, carbon cycling and food web structure. Y1 - 2017 U6 - https://doi.org/10.1038/srep44478 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Adel, Mustafa A1 - Elbehery, Ali H. A. A1 - Aziz, Sherry K. A1 - Aziz, Ramy K. A1 - Grossart, Hans-Peter A1 - Siam, Rania T1 - Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments JF - Scientific reports N2 - The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 x 10(9) bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer. Y1 - 2016 U6 - https://doi.org/10.1038/srep32704 SN - 2045-2322 VL - 6 SP - 8882 EP - 8888 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Großart, Hans-Peter A1 - Rojas-Jimenez, Keilor T1 - Aquatic fungi: targeting the forgotten in microbial ecology JF - Current opinion in microbiology N2 - Fungi constitute important and conspicuous components of aquatic microbial communities, but their diversity and functional roles remain poorly characterized. New methods and conceptual frameworks are required to accurately describe their ecological roles, involvement in global cycling processes, and utility for human activities, considering both cultivation independent techniques as well as experiments in laboratory and in natural ecosystems. Here we highlight recent developments and extant knowledge gaps in aquatic mycology, and provide a conceptual model to expose the importance of fungi in aquatic food webs and related biogeochemical processes. Y1 - 2016 U6 - https://doi.org/10.1016/j.mib.2016.03.016 SN - 1369-5274 SN - 1879-0364 VL - 31 SP - 140 EP - 145 PB - Elsevier CY - London ER - TY - JOUR A1 - Van den Wyngaert, Silke A1 - Rojas-Jimenez, Keilor A1 - Seto, Kensuke A1 - Kagami, Maiko A1 - Grossart, Hans-Peter T1 - Diversity and Hidden Host Specificity of Chytrids Infecting Colonial Volvocacean Algae JF - Journal of Eukaryotic Microbiology N2 - Chytrids are zoosporic fungi that play an important, but yet understudied, ecological role in aquatic ecosystems. Many chytrid species have been morphologically described as parasites on phytoplankton. However, the majority of them have rarely been isolated and lack DNA sequence data. In this study we isolated and cultivated three parasitic chytrids, infecting a common volvocacean host species, Yamagishiella unicocca. To identify the chytrids, we characterized morphology and life cycle, and analyzed phylogenetic relationships based on 18S and 28S rDNA genes. Host range and specificity of the chytrids was determined by cross-infection assays with host strains, characterized by rbcL and ITS markers. We were able to confirm the identity of two chytrid strains as Endocoenobium eudorinae Ingold and Dangeardia mamillata Schroder and described the third chytrid strain as Algomyces stechlinensis gen. et sp. nov. The three chytrids were assigned to novel and phylogenetically distant clades within the phylum Chytridiomycota, each exhibiting different host specificities. By integrating morphological and molecular data of both the parasitic chytrids and their respective host species, we unveiled cryptic host-parasite associations. This study highlights that a high prevalence of (pseudo)cryptic diversity requires molecular characterization of both phytoplankton host and parasitic chytrid to accurately identify and compare host range and specificity, and to study phytoplankton-chytrid interactions in general. KW - Chytridiomycota KW - Dangeardia mamillata KW - Endocoenobium eudorinae KW - fungal parasites KW - life cycle KW - phytoplankton Y1 - 2018 U6 - https://doi.org/10.1111/jeu.12632 SN - 1066-5234 SN - 1550-7408 VL - 65 IS - 6 SP - 870 EP - 881 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Tiegs, Scott D. A1 - Costello, David M. A1 - Isken, Mark W. A1 - Woodward, Guy A1 - McIntyre, Peter B. A1 - Gessner, Mark O. A1 - Chauvet, Eric A1 - Griffiths, Natalie A. A1 - Flecker, Alex S. A1 - Acuna, Vicenc A1 - Albarino, Ricardo A1 - Allen, Daniel C. A1 - Alonso, Cecilia A1 - Andino, Patricio A1 - Arango, Clay A1 - Aroviita, Jukka A1 - Barbosa, Marcus V. M. A1 - Barmuta, Leon A. A1 - Baxter, Colden V. A1 - Bell, Thomas D. C. A1 - Bellinger, Brent A1 - Boyero, Luz A1 - Brown, Lee E. A1 - Bruder, Andreas A1 - Bruesewitz, Denise A. A1 - Burdon, Francis J. A1 - Callisto, Marcos A1 - Canhoto, Cristina A1 - Capps, Krista A. A1 - Castillo, Maria M. A1 - Clapcott, Joanne A1 - Colas, Fanny A1 - Colon-Gaud, Checo A1 - Cornut, Julien A1 - Crespo-Perez, Veronica A1 - Cross, Wyatt F. A1 - Culp, Joseph M. A1 - Danger, Michael A1 - Dangles, Olivier A1 - de Eyto, Elvira A1 - Derry, Alison M. A1 - Diaz Villanueva, Veronica A1 - Douglas, Michael M. A1 - Elosegi, Arturo A1 - Encalada, Andrea C. A1 - Entrekin, Sally A1 - Espinosa, Rodrigo A1 - Ethaiya, Diana A1 - Ferreira, Veronica A1 - Ferriol, Carmen A1 - Flanagan, Kyla M. A1 - Fleituch, Tadeusz A1 - Shah, Jennifer J. Follstad A1 - Frainer, Andre A1 - Friberg, Nikolai A1 - Frost, Paul C. A1 - Garcia, Erica A. A1 - Lago, Liliana Garcia A1 - Garcia Soto, Pavel Ernesto A1 - Ghate, Sudeep A1 - Giling, Darren P. A1 - Gilmer, Alan A1 - Goncalves, Jose Francisco A1 - Gonzales, Rosario Karina A1 - Graca, Manuel A. S. A1 - Grace, Mike A1 - Grossart, Hans-Peter A1 - Guerold, Francois A1 - Gulis, Vlad A1 - Hepp, Luiz U. A1 - Higgins, Scott A1 - Hishi, Takuo A1 - Huddart, Joseph A1 - Hudson, John A1 - Imberger, Samantha A1 - Iniguez-Armijos, Carlos A1 - Iwata, Tomoya A1 - Janetski, David J. A1 - Jennings, Eleanor A1 - Kirkwood, Andrea E. A1 - Koning, Aaron A. A1 - Kosten, Sarian A1 - Kuehn, Kevin A. A1 - Laudon, Hjalmar A1 - Leavitt, Peter R. A1 - Lemes da Silva, Aurea L. A1 - Leroux, Shawn J. A1 - Leroy, Carri J. A1 - Lisi, Peter J. A1 - MacKenzie, Richard A1 - Marcarelli, Amy M. A1 - Masese, Frank O. A1 - Mckie, Brendan G. A1 - Oliveira Medeiros, Adriana A1 - Meissner, Kristian A1 - Milisa, Marko A1 - Mishra, Shailendra A1 - Miyake, Yo A1 - Moerke, Ashley A1 - Mombrikotb, Shorok A1 - Mooney, Rob A1 - Moulton, Tim A1 - Muotka, Timo A1 - Negishi, Junjiro N. A1 - Neres-Lima, Vinicius A1 - Nieminen, Mika L. A1 - Nimptsch, Jorge A1 - Ondruch, Jakub A1 - Paavola, Riku A1 - Pardo, Isabel A1 - Patrick, Christopher J. A1 - Peeters, Edwin T. H. M. A1 - Pozo, Jesus A1 - Pringle, Catherine A1 - Prussian, Aaron A1 - Quenta, Estefania A1 - Quesada, Antonio A1 - Reid, Brian A1 - Richardson, John S. A1 - Rigosi, Anna A1 - Rincon, Jose A1 - Risnoveanu, Geta A1 - Robinson, Christopher T. A1 - Rodriguez-Gallego, Lorena A1 - Royer, Todd V. A1 - Rusak, James A. A1 - Santamans, Anna C. A1 - Selmeczy, Geza B. A1 - Simiyu, Gelas A1 - Skuja, Agnija A1 - Smykla, Jerzy A1 - Sridhar, Kandikere R. A1 - Sponseller, Ryan A1 - Stoler, Aaron A1 - Swan, Christopher M. A1 - Szlag, David A1 - Teixeira-de Mello, Franco A1 - Tonkin, Jonathan D. A1 - Uusheimo, Sari A1 - Veach, Allison M. A1 - Vilbaste, Sirje A1 - Vought, Lena B. M. A1 - Wang, Chiao-Ping A1 - Webster, Jackson R. A1 - Wilson, Paul B. A1 - Woelfl, Stefan A1 - Xenopoulos, Marguerite A. A1 - Yates, Adam G. A1 - Yoshimura, Chihiro A1 - Yule, Catherine M. A1 - Zhang, Yixin X. A1 - Zwart, Jacob A. T1 - Global patterns and drivers of ecosystem functioning in rivers and riparian zones JF - Science Advances N2 - River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale. Y1 - 2019 U6 - https://doi.org/10.1126/sciadv.aav0486 SN - 2375-2548 VL - 5 IS - 1 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Kettner, Marie Therese A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Grossart, Hans-Peter T1 - The Eukaryotic Life on Microplastics in Brackish Ecosystems JF - Frontiers in Microbiology N2 - Microplastics (MP) constitute a widespread contaminant all over the globe. Rivers and wastewater treatment plants (WWTP) transport annually several million tons of MP into freshwaters, estuaries and oceans, where they provide increasing artificial surfaces for microbial colonization. As knowledge on MP-attached communities is insufficient for brackish ecosystems, we conducted exposure experiments in the coastal Baltic Sea, an in-flowing river and a WWTP within the drainage basin. While reporting on prokaryotic and fungal communities from the same set-up previously, we focus here on the entire eukaryotic communities. Using high-throughput 18S rRNA gene sequencing, we analyzed the eukaryotes colonizing on two types of MP, polyethylene and polystyrene, and compared them to the ones in the surrounding water and on a natural surface (wood). More than 500 different taxa across almost all kingdoms of the eukaryotic tree of life were identified on MP, dominated by Alveolata, Metazoa, and Chloroplastida. The eukaryotic community composition on MP was significantly distinct from wood and the surrounding water, with overall lower diversity and the potentially harmful dinoflagellate Pfiesteria being enriched on MP. Co-occurrence networks, which include prokaryotic and eukaryotic taxa, hint at possibilities for dynamic microbial interactions on MP. This first report on total eukaryotic communities on MP in brackish environments highlights the complexity of MP-associated biofilms, potentially leading to altered microbial activities and hence changes in ecosystem functions. KW - microeukaryotes KW - plastic-associated biofilms KW - Baltic Sea KW - polyethylene KW - polystyrene KW - diversity profiles KW - network analysis KW - next-generation sequencing Y1 - 2019 U6 - https://doi.org/10.3389/fmicb.2019.00538 SN - 1664-302X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Svanys, Algirdas A1 - Eigemann, Falk A1 - Großart, Hans-Peter A1 - Hilt, Sabine T1 - Microcystins do not necessarily lower the sensitivity of Microcystis aeruginosa to tannic acid JF - FEMS microbiology letters N2 - Different phytoplankton strains have been shown to possess varying sensitivities towards macrophyte allelochemicals, yet the reasons for this are largely unknown. To test whether microcystin (MC) is responsible for strain-specific sensitivities of Microcystis aeruginosa to macrophyte allelochemicals, we compared the sensitivity of 12 MC- and non-MC-producing M. aeruginosa strains, including an MC-deficient mutant and its wild type, to the polyphenolic allelochemical tannic acid (TA). Non-MC-producing strains showed a significantly higher sensitivity to TA than MC-producing strains, both in Chlorophyll a concentrations and quantum yields of photosystem II. In contrast, an MC-deficient mutant displayed a higher fitness against TA compared to its wild type. These results suggest that the resistance of M. aeruginosa to polyphenolic allelochemicals is not primarily related to MCs per se, but to other yet unknown protective mechanisms related to MCs. KW - allelopathy KW - Delta mcyB mutant KW - microcystin KW - Microcystis aeruginosa KW - tannic acid Y1 - 2016 U6 - https://doi.org/10.1093/femsle/fnv227 SN - 0378-1097 SN - 1574-6968 VL - 363 SP - 53 EP - 77 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Rieck, Angelika A1 - Herlemann, Daniel P. R. A1 - Jürgens, Klaus A1 - Grossart, Hans-Peter T1 - Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea T2 - Frontiers in microbiology N2 - Many studies on bacterial community composition (BCC) do not distinguish between particle associated (PA) and free-living (FL) bacteria or neglect the PA fraction by pre-filtration removing most particles. Although temporal and spatial gradients in environmental variables are known to shape BCC, it remains unclear how and to what extent PA and FL bacterial diversity responds to such environmental changes. To elucidate the BCC of both bacterial fractions related to different environmental settings, we studied surface samples of three Baltic Sea stations (marine, mesohaline, and oligohaline) in two different seasons (summer and fall/winter). Amplicon sequencing of the 16S rRNA gene revealed significant differences in BCC of both bacterial fractions among stations and seasons, with a particularly high number of PA operational taxonomic units (OTUs at genus-level) at the marine station in both seasons. "Shannon and Simpson indices" showed a higher diversity of PA than FL bacteria at the marine station in both seasons and at the oligohaline station in fall/winter. In general, a high fraction of bacterial OTUs was found exclusively in the PA fraction (52% of total OTUs). These findings indicate that PA bacteria significantly contribute to overall bacterial richness and that they differ from FL bacteria. Therefore, to gain a deeper understanding on diversity and dynamics of aquatic bacteria, PA and FL bacteria should be generally studied independently. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 428 KW - microbial communities KW - microbial diversity KW - particle-associated and free-living bacteria KW - Baltic Sea KW - salinity gradient KW - seasons KW - 454-pyrosequencing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406442 ER - TY - GEN A1 - Dubovskaya, Olga P. A1 - Tang, Kam W. A1 - Gladyshev, Michail I. A1 - Kirillin, Georgiy A1 - Buseva, Zhanna A1 - Kasprzak, Peter A1 - Tolomeev, Aleksandr P. A1 - Grossart, Hans-Peter T1 - Estimating in situ zooplankton non-predation mortality in an oligo-mesotrophic lake from sediment trap data BT - caveats and reality check T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 501 KW - fresh-water KW - nonconsumptive mortality KW - crustacean zooplankton KW - nonpredatory mortality KW - siberian reservoir KW - seasonal dynamics KW - copepod carcasses KW - sinking speed KW - aniline blue KW - marine snow Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408392 SN - 1866-8372 IS - 501 ER - TY - GEN A1 - Wurzbacher, Christian A1 - Fuchs, Andrea A1 - Attermeyer, Katrin A1 - Frindte, Katharina A1 - Grossart, Hans-Peter A1 - Hupfer, Michael A1 - Casper, Peter A1 - Monaghan, Michael T. T1 - Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137Cs dating and was sectioned into layers 1–4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5–14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper “replacement horizon” is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower “depauperate horizon” is characterized by low taxonomic richness, more stable “low-energy” conditions, and a dominance of enigmatic Archaea. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1111 KW - Archaea KW - Eukaryota KW - Bacteria KW - community KW - freshwater KW - lake KW - DNA metabarcoding KW - beta-diversity KW - sediment KW - turnover Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431965 SN - 1866-8372 IS - 1111 ER - TY - GEN A1 - Kettner, Marie Therese A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Grossart, Hans-Peter T1 - The Eukaryotic Life on Microplastics in Brackish Ecosystems T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Microplastics (MP) constitute a widespread contaminant all over the globe. Rivers and wastewater treatment plants (WWTP) transport annually several million tons of MP into freshwaters, estuaries and oceans, where they provide increasing artificial surfaces for microbial colonization. As knowledge on MP-attached communities is insufficient for brackish ecosystems, we conducted exposure experiments in the coastal Baltic Sea, an in-flowing river and a WWTP within the drainage basin. While reporting on prokaryotic and fungal communities from the same set-up previously, we focus here on the entire eukaryotic communities. Using high-throughput 18S rRNA gene sequencing, we analyzed the eukaryotes colonizing on two types of MP, polyethylene and polystyrene, and compared them to the ones in the surrounding water and on a natural surface (wood). More than 500 different taxa across almost all kingdoms of the eukaryotic tree of life were identified on MP, dominated by Alveolata, Metazoa, and Chloroplastida. The eukaryotic community composition on MP was significantly distinct from wood and the surrounding water, with overall lower diversity and the potentially harmful dinoflagellate Pfiesteria being enriched on MP. Co-occurrence networks, which include prokaryotic and eukaryotic taxa, hint at possibilities for dynamic microbial interactions on MP. This first report on total eukaryotic communities on MP in brackish environments highlights the complexity of MP-associated biofilms, potentially leading to altered microbial activities and hence changes in ecosystem functions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 741 KW - microeukaryotes KW - plastic-associated biofilms KW - Baltic Sea KW - polyethylene KW - polystyrene KW - diversity profiles KW - network analysis KW - next-generation sequencing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434996 SN - 1866-8372 IS - 741 ER - TY - GEN A1 - Rojas-Jimenez, Keilor A1 - Rieck, Angelika A1 - Wurzbacher, Christian A1 - Jürgens, Klaus A1 - Labrenz, Matthias A1 - Grossart, Hans-Peter T1 - A Salinity Threshold Separating Fungal Communities in the Baltic Sea T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Salinity is a significant factor for structuring microbial communities, but little is known for aquatic fungi, particularly in the pelagic zone of brackish ecosystems. In this study, we explored the diversity and composition of fungal communities following a progressive salinity decline (from 34 to 3 PSU) along three transects of ca. 2000 km in the Baltic Sea, the world’s largest estuary. Based on 18S rRNA gene sequence analysis, we detected clear changes in fungal community composition along the salinity gradient and found significant differences in composition of fungal communities established above and below a critical value of 8 PSU. At salinities below this threshold, fungal communities resembled those from freshwater environments, with a greater abundance of Chytridiomycota, particularly of the orders Rhizophydiales, Lobulomycetales, and Gromochytriales. At salinities above 8 PSU, communities were more similar to those from marine environments and, depending on the season, were dominated by a strain of the LKM11 group (Cryptomycota) or by members of Ascomycota and Basidiomycota. Our results highlight salinity as an important environmental driver also for pelagic fungi, and thus should be taken into account to better understand fungal diversity and ecological function in the aquatic realm. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 739 KW - fungal diversity KW - baltic sea KW - salinity gradient KW - brackish waters KW - chytridiomycota KW - cryptomycota Y1 - 1019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434937 SN - 1866-8372 IS - 739 ER - TY - GEN A1 - Garcia, Sarahi L. A1 - Buck, Moritz A1 - Hamilton, Joshua J. A1 - Wurzbacher, Christian A1 - Grossart, Hans-Peter A1 - McMahon, Katherine D. A1 - Eiler, Alexander T1 - Model communities hint at promiscuous metabolic linkages between ubiquitous free-living freshwater bacteria T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Genome streamlining is frequently observed in free-living aquatic microorganisms and results in physiological dependencies between microorganisms. However, we know little about the specificity of these microbial associations. In order to examine the specificity and extent of these associations, we established mixed cultures from three different freshwater environments and analyzed the cooccurrence of organisms using a metagenomic time series. Free-living microorganisms with streamlined genomes lacking multiple biosynthetic pathways showed no clear recurring pattern in their interaction partners. Free-living freshwater bacteria form promiscuous cooperative associations. This notion contrasts with the well-documented high specificities of interaction partners in host-associated bacteria. Considering all data together, we suggest that highly abundant free-living bacterial lineages are functionally versatile in their interactions despite their distinct streamlining tendencies at the single-cell level. This metabolic versatility facilitates interactions with a variable set of community members. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 714 KW - community KW - interactions KW - metagenomics KW - microbial ecology KW - mixed cultures KW - promiscuous Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427299 IS - 714 ER - TY - INPR A1 - Wannicke, Nicola A1 - Endres, S. A1 - Engel, A. A1 - Grossart, Hans-Peter A1 - Nausch, M. A1 - Unger, J. A1 - Voss, Martin T1 - Response of nodularia spumigena to pCO(2) - Part 1: Growth, production and nitrogen cycling T2 - Biogeosciences N2 - Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N-2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 mu atm), mid (median 353 mu atm), and high (median 548 mu atm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO(2) on C and N-2 fixation, as well as on cell growth. An increase in pCO(2) during incubation days 0 to 9 resulted in an elevation in growth rate by 84 +/- 38% (low vs. high pCO(2)) and 40 +/- 25% (mid vs. high pCO(2)), as well as in N-2 fixation by 93 +/- 35% and 38 +/- 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO(2) treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO(2). Our findings suggest that rising pCO(2) stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed. Y1 - 2012 U6 - https://doi.org/10.5194/bg-9-2973-2012 SN - 1726-4170 VL - 9 IS - 8 SP - 2973 EP - 2988 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Bickel, Samantha L. A1 - Tang, Kam W. A1 - Grossart, Hans-Peter T1 - Ciliate epibionts associated with crustacean zooplankton in German lakes - distribution, motility, and bacterivory JF - Frontiers in microbiology N2 - Ciliate epibionts associated with crustacean zooplankton are widespread in aquatic systems, but their ecological roles are little known. We studied the occurrence of ciliate epibionts on crustacean zooplankton in nine German lakes with different limnological features during the summer of 2011. We also measured the detachment and re-attachment rates of the ciliates, changes in their motility, and the feeding rates of attached vs. detached ciliate epibionts. Epibionts were found in all lakes sampled except an acidic lake with large humic inputs. Epibiont prevalence was as high as 80.96% on the cladoceran Daphnia cucullata, 67.17% on the cladoceran Diaphanosoma brachyurum, and 46.67% on the calanoid copepod Eudiaptomus gracilis. Both cladoceran groups typically had less than 10 epibionts per individual, while the epibiont load on E. gracilis ranged from 1 to >30 epibionts per individual. After the death of the zooplankton host, the peritrich ciliate epibiont Epistylis sp. detached in an exponential fashion with a half-life of 5 min, and 98% detached within 30 min, leaving behind the stalks used for attachment. Immediately after detachment, the ciliates were immotile, but 62% became motile within 60 min. When a new host was present, only 27% reattached after 120 min. The average measured ingestion rate and clearance rate of Epistylis were 11,745 bacteria ciliate(-1) h(-1) and 24.33 mu l ciliate(-1) h(-1), respectively. Despite their high feeding rates, relatively low epibiont abundances were observed in the field, which suggests either diversion of energy to stalk formation, high metabolic loss by the epibionts, or high mortality among the epibiont populations. KW - ciliate epibionts KW - Epistylis KW - crustacean zooplankton KW - bacterivory KW - epibiont motility Y1 - 2012 U6 - https://doi.org/10.3389/fmicb.2012.00243 SN - 1664-302X VL - 3 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Roesel, Stefan A1 - Grossart, Hans-Peter T1 - Contrasting dynamics in activity and community composition of free-living and particle-associated bacteria in spring JF - Aquatic microbial ecology : international journal N2 - Phytoplankton development affects the community structure and dynamics of freshwater bacteria by changing the availability of nutrients, algal exudates and biological surfaces. To elucidate these effects of phytoplankton development in spring in oligotrophic Lake Stechlin (Germany), we measured limnological and biological parameters, including the bacterial community composition (BCC), at the depth of the highest chlorophyll a concentration. To increase the resolution of BCC measurements, we separated particle-associated (PA) and free-living (FL) bacteria using serial filtration through 5.0 and 0.2 mu m pore size filters, respectively. The BCC of ultramicrobacteria was also determined by collecting the 0.2 mu m filtrate on 0.1 mu m filters. Changes in the community composition of Bacteria and particularly of Actinobacteria, one of the most important bacterial groups in temperate freshwater habitats, were studied via DGGE analysis of PCR-amplified 16S rRNA gene fragments. Patterns in BCC dynamics of FL Bacteria and Actinobacteria remained fairly constant throughout the study period, while patterns of PA Bacteria were more variable over time. At the breakdown of the diatom spring bloom, bacterial production and abundance sharply increased, indicating a close coupling between heterotrophic bacteria and algal detritus. The succession in BCC revealed life-style dependent patterns related to specific environmental variables. Our results indicate independent dynamics of PA and FL Bacteria as well as Actinobacteria during succession of phytoplankton spring blooms. These differences in bacterial lifestyle can only be resolved when the PA and FL fractions of microorganisms are separated. KW - Bacterial community composition (BCC) KW - Spring bloom KW - Bacteria-phytoplankton coupling KW - Pollen KW - Free-living and particle-associated bacteria KW - Lake Stechlin Y1 - 2012 U6 - https://doi.org/10.3354/ame01568 SN - 0948-3055 VL - 66 IS - 2 SP - 169 EP - + PB - Institute of Mathematical Statistics CY - Oldendorf Luhe ER - TY - JOUR A1 - Grossart, Hans-Peter A1 - Frindte, Katharina A1 - Dziallas, Claudia A1 - Eckert, Werner A1 - Tang, Kam W. T1 - Microbial methane production in oxygenated water column of an oligotrophic lake JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8-2.4 nM.h(-1) at 6 m, which could explain 33-44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. KW - epilimnic methane peak KW - methanogens Y1 - 2011 U6 - https://doi.org/10.1073/pnas.1110716108 SN - 0027-8424 VL - 108 IS - 49 SP - 19657 EP - 19661 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Ghylin, Trevor W. A1 - Garcia, Sarahi L. A1 - Moya, Francisco A1 - Oyserman, Ben O. A1 - Schwientek, Patrick A1 - Forest, Katrina T. A1 - Mutschler, James A1 - Dwulit-Smith, Jeffrey A1 - Chan, Leong-Keat A1 - Martinez-Garcia, Manuel A1 - Sczyrba, Alexander A1 - Stepanauskas, Ramunas A1 - Grossart, Hans-Peter A1 - Woyke, Tanja A1 - Warnecke, Falk A1 - Malmstrom, Rex A1 - Bertilsson, Stefan A1 - McMahon, Katherine D. T1 - Comparative single-cell genomics reveals potential ecological niches for the freshwater acl Actinobacteria lineage JF - The ISME journal : multidisciplinary journal of microbial ecology N2 - Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di-and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits. Y1 - 2014 U6 - https://doi.org/10.1038/ismej.2014.135 SN - 1751-7362 SN - 1751-7370 VL - 8 IS - 12 SP - 2503 EP - 2516 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Bizic-Ionescu, Mina A1 - Amann, Rudolf A1 - Grossart, Hans-Peter T1 - Massive regime shifts and high activity of heterotrophic bacteria in an ice-covered lake JF - PLoS one N2 - In winter 2009/10, a sudden under-ice bloom of heterotrophic bacteria occurred in the seasonally ice-covered, temperate, deep, oligotrophic Lake Stechlin (Germany). Extraordinarily high bacterial abundance and biomass were fueled by the breakdown of a massive bloom of Aphanizomenon flos-aquae after ice formation. A reduction in light resulting from snow coverage exerted a pronounced physiological stress on the cyanobacteria. Consequently, these were rapidly colonized, leading to a sudden proliferation of attached and subsequently of free-living heterotrophic bacteria. Total bacterial protein production reached 201 mg C L-1 d(-1), ca. five times higher than spring-peak values that year. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis at high temporal resolution showed pronounced changes in bacterial community structure coinciding with changes in the physiology of the cyanobacteria. Pyrosequencing of 16S rRNA genes revealed that during breakdown of the cyanobacterial population, the diversity of attached and free-living bacterial communities were reduced to a few dominant families. Some of these were not detectable during the early stages of the cyanobacterial bloom indicating that only specific, well adapted bacterial communities can colonize senescent cyanobacteria. Our study suggests that in winter, unlike commonly postulated, carbon rather than temperature is the limiting factor for bacterial growth. Frequent phytoplankton blooms in ice-covered systems highlight the need for year-round studies of aquatic ecosystems including the winter season to correctly understand element and energy cycling through aquatic food webs, particularly the microbial loop. On a global scale, such knowledge is required to determine climate change induced alterations in carbon budgets in polar and temperate aquatic systems. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0113611 SN - 1932-6203 VL - 9 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Glaeser, Stefanie P. A1 - Berghoff, Bork A. A1 - Stratmann, Verena A1 - Grossart, Hans-Peter A1 - Glaeser, Jens T1 - Contrasting effects of singlet oxygen and hydrogen peroxide on bacterial community composition in a humic lake JF - PLoS one N2 - Light excitation of humic matter generates reactive oxygen species (ROS) in surface waters of aquatic ecosystems. Abundant ROS generated in humic matter rich lakes include singlet oxygen (O-1(2)) and hydrogen peroxide (H2O2). Because these ROS differ in half-life time and toxicity, we compared their effects on microbial activity (C-14-Leucine incorporation) and bacterial community composition (BCC) in surface waters of humic Lake Grosse Fuchskuhle (North-eastern Germany). For this purpose, experiments with water samples collected from the lake were conducted in July 2006, September 2008 and August 2009. Artificially increased O-1(2) and H2O2 concentrations inhibited microbial activity in water samples to a similar extent, but the effect of the respective ROS on BCC varied strongly. BCC analysis by 16S rRNA gene clone libraries and RT-PCR DGGE revealed ROS specific changes in relative abundance and activity of major bacterial groups and composition of dominating phylotypes. These changes were consistent in the three experiments performed in different years. The relative abundance of Polynucleobacter necessarius, Limnohabitans-related phylotypes (Betaproteobacteria), and Novosphingobium acidiphilum (Alphaproteobacteria) increased or was not affected by photo-sensitized O-1(2) exposure, but decreased after H2O2 exposure. The opposite pattern was found for Actinobacteria of the freshwater AcI-B cluster which were highly sensitive to O-1(2) but not to H2O2 exposure. Furthermore, group-specific RT-PCR DGGE analysis revealed that particle-attached P. necessarius and Limnohabitans-related phylotypes exhibit higher resistance to O-1(2) exposure compared to free-living populations. These results imply that O-1(2) acts as a factor in niche separation of closely affiliated Polynucleobacter and Limnohabitans-related phylotypes. Consequently, oxidative stress caused by photochemical ROS generation should be regarded as an environmental variable determining abundance, activity, and phylotype composition of environmentally relevant bacterial groups, in particular in illuminated and humic matter rich waters. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0092518 SN - 1932-6203 VL - 9 IS - 3 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Wurzbacher, Christian A1 - Roesel, Stefan A1 - Rychla, Anna A1 - Grossart, Hans-Peter T1 - Importance of saprotrophic freshwater fungi for pollen degradation JF - PLoS one N2 - Fungi and bacteria are the major organic matter (OM) decomposers in aquatic ecosystems. While bacteria are regarded as primary mineralizers in the pelagic zone of lakes and oceans, fungi dominate OM decomposition in streams and wetlands. Recent findings indicate that fungal communities are also active in lakes, but little is known about their diversity and interactions with bacteria. Therefore, the decomposer niche overlap of saprotrophic fungi and bacteria was studied on pollen (as a seasonally recurring source of fine particulate OM) by performing microcosm experiments with three different lake types. Special emphasis was placed on analysis of fungal community composition and diversity. We hypothesized that (I) pollen select for small saprotrophic fungi and at the same time for typical particle-associated bacteria; (II) fungal communities form specific free-living and attached sub-communities in each lake type; (III) the ratio between fungi or bacteria on pollen is controlled by the lake's chemistry. Bacteria-to-fungi ratios were determined by quantitative PCR (qPCR), and bacterial and fungal diversity were studied by clone libraries and denaturing gradient gel electrophoresis (DGGE) fingerprints. A protease assay was used to identify functional differences between treatments. For generalization, systematic differences in bacteria-to-fungi ratios were analyzed with a dataset from the nearby Baltic Sea rivers. High abundances of Chytridiomycota as well as occurrences of Cryptomycota and yeast-like fungi confirm the decomposer niche overlap of saprotrophic fungi and bacteria on pollen. As hypothesized, microbial communities consistently differed between the lake types and exhibited functional differences. Bacteria-to-fungi ratios correlated well with parameters such as organic carbon and pH. The importance of dissolved organic carbon and nitrogen for bacteria-to-fungi ratios was supported by the Baltic Sea river dataset. Our findings highlight the fact that carbon-to-nitrogen ratios may also control fungal contributions to OM decomposition in aquatic ecosystems. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0094643 SN - 1932-6203 VL - 9 IS - 4 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Tada, Yuya A1 - Grossart, Hans-Peter T1 - Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method JF - The ISME journal : multidisciplinary journal of microbial ecology N2 - In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling. KW - actively growing bacteria (AGB) KW - bromodeoxyuridine (BrdU) immunocytochemistry KW - fluorescence-activated cell sorting (FACS) KW - bacterial community composition KW - N-acetyl-glucosamine (NAG) KW - Lake Stechlin Y1 - 2014 U6 - https://doi.org/10.1038/ismej.2013.148 SN - 1751-7362 SN - 1751-7370 VL - 8 IS - 2 SP - 441 EP - 454 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Engel, Anja A1 - Piontek, Judith A1 - Grossart, Hans-Peter A1 - Riebesell, Ulf A1 - Schulz, Kai Georg A1 - Sperling, Martin T1 - Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms JF - Journal of plankton research N2 - A mesocosm experiment was conducted to investigate the impact of rising fCO(2) on the build-up and decline of organic matter during coastal phytoplankton blooms. Five mesocosms (similar to 38 mA(3) each) were deployed in the Baltic Sea during spring (2009) and enriched with CO2 to yield a gradient of 355-862 A mu atm. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. Changes in particulate and dissolved organic matter concentrations, including dissolved high-molecular weight (> 1 kDa) combined carbohydrates, dissolved free and combined amino acids as well as transparent exopolymer particles (TEP), were monitored over 21 days together with bacterial abundance, and hydrolytic extracellular enzyme activities. Overall, organic matter followed well-known bloom dynamics in all CO2 treatments alike. At high fCO(2,) higher Delta POC:Delta PON during bloom rise, and higher TEP concentrations during bloom peak, suggested preferential accumulation of carbon-rich components. TEP concentration at bloom peak was significantly related to subsequent sedimentation of particulate organic matter. Bacterial abundance increased during the bloom and was highest at high fCO(2). We conclude that increasing fCO(2) supports production and exudation of carbon-rich components, enhancing particle aggregation and settling, but also providing substrate and attachment sites for bacteria. More labile organic carbon and higher bacterial abundance can increase rates of oxygen consumption and may intensify the already high risk of oxygen depletion in coastal seas in the future. KW - mesocosm KW - ocean acidification KW - phytoplankton KW - organic matter KW - TEP Y1 - 2014 U6 - https://doi.org/10.1093/plankt/fbt125 SN - 0142-7873 SN - 1464-3774 VL - 36 IS - 3 SP - 641 EP - 657 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Tang, Kam W. A1 - Gladyshev, Michail I. A1 - Dubovskaya, Olgo P. A1 - Kirillin, Georgiy A1 - Grossart, Hans-Peter T1 - Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments JF - Journal of plankton research N2 - Zooplankton carcasses are ubiquitous in marine and freshwater systems, implicating the importance of non-predatory mortality, but both are often overlooked in ecological studies compared with predatory mortality. The development of several microscopic methods allows the distinction between live and dead zooplankton in field samples, and the reported percentages of dead zooplankton average 11.6 (minimum) to 59.8 (maximum) in marine environments, and 7.4 (minimum) to 47.6 (maximum) in fresh and inland waters. Common causes of non-predatory mortality among zooplankton include senescence, temperature change, physical and chemical stresses, parasitism and food-related factors. Carcasses resulting from non-predatory mortality may undergo decomposition leading to an increase in microbial production and a shift in microbial composition in the water column. Alternatively, sinking carcasses may contribute significantly to vertical carbon flux especially outside the phytoplankton growth seasons, and become a food source for the benthos. Global climate change is already altering freshwater ecosystems on multiple levels, and likely will have significant positive or negative effects on zooplankton non-predatory mortality. Better spatial and temporal studies of zooplankton carcasses and non-predatory mortality rates will improve our understanding of this important but under-appreciated topic. KW - carbon flux KW - inland waters KW - lakes KW - live KW - dead sorting KW - non-predatory mortality KW - zooplankton carcasses Y1 - 2014 U6 - https://doi.org/10.1093/plankt/fbu014 SN - 0142-7873 SN - 1464-3774 VL - 36 IS - 3 SP - 597 EP - 612 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Krause, Sascha A1 - Le Roux, Xavier A1 - Niklaus, Pascal A. A1 - Van Bodegom, Peter M. A1 - Lennon, Jay T. A1 - Bertilsson, Stefan A1 - Grossart, Hans-Peter A1 - Philippot, Laurent A1 - Bodelier, Paul L. E. T1 - Trait-based approaches for understanding microbial biodiversity and ecosystem functioning JF - Frontiers in microbiology N2 - In ecology, biodiversity-ecosystem functioning (BEE) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEE of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEE using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEE studies are often inadequate to unravel BEE relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEE relationships and thus generating systematic principles in microbial ecology and more generally ecology. KW - functional traits KW - ecosystem function KW - ecological theory KW - study designs KW - microbial diversity Y1 - 2014 U6 - https://doi.org/10.3389/fmicb.2014.00251 SN - 1664-302X VL - 5 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Salka, Ivette A1 - Wurzbacher, Christian A1 - Garcia, Sarahi L. A1 - Labrenz, Matthias A1 - Juergens, Klaus A1 - Grossart, Hans-Peter T1 - Distribution of acI-Actinorhodopsin genes in Baltic Sea salinity gradients indicates adaptation of facultative freshwater photoheterotrophs to brackish waters JF - Environmental microbiology Y1 - 2014 SN - 1462-2912 SN - 1462-2920 VL - 16 IS - 2 SP - 586 EP - 597 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Pieck, Angelika A1 - Herlemann, Daniel P. P. A1 - Juergens, Klaus A1 - Grossart, Hans-Peter T1 - Particle-Associated Differ from Free-Living Bacteria in Surface Waters of the Baltic Sea JF - Frontiers in microbiology N2 - Many studies on bacterial community composition (BCC) do not distinguish between particle associated (PA) and free-living (FL) bacteria or neglect the PA fraction by pre-filtration removing most particles. Although temporal and spatial gradients in environmental variables are known to shape BCC, it remains unclear how and to what extent PA and FL bacterial diversity responds to such environmental changes. To elucidate the BCC of both bacterial fractions related to different environmental settings, we studied surface samples of three Baltic Sea stations (marine, mesohaline, and oligohaline) in two different seasons (summer and fall/winter). Amplicon sequencing of the 16S rRNA gene revealed significant differences in BCC of both bacterial fractions among stations and seasons, with a particularly high number of PA operational taxonomic units (OTUs at genus-level) at the marine station in both seasons. "Shannon and Simpson indices" showed a higher diversity of PA than FL bacteria at the marine station in both seasons and at the oligohaline station in fall/winter. In general, a high fraction of bacterial OTUs was found exclusively in the PA fraction (52% of total OTUs). These findings indicate that PA bacteria significantly contribute to overall bacterial richness and that they differ from FL bacteria. Therefore, to gain a deeper understanding on diversity and dynamics of aquatic bacteria, PA and FL bacteria should be generally studied independently. KW - microbial communities KW - microbial diversity KW - particle-associated and free-living bacteria KW - Baltic Sea KW - salinity gradient KW - seasons KW - 454-pyrosequencing Y1 - 2015 U6 - https://doi.org/10.3389/fmicb.2015.01297 SN - 1664-302X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Frindte, Katharina A1 - Allgaier, Martin A1 - Grossart, Hans-Peter A1 - Eckert, Werner T1 - Microbial response to experimentally controlled redox transitions at the sediment water interface JF - PLoS one N2 - The sediment-water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment-water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment-water interface. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0143428 SN - 1932-6203 VL - 10 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Bickel, Samantha L. A1 - Tang, Kam W. A1 - Grossart, Hans-Peter T1 - Structure and function of zooplankton-associated bacterial communities in a temperate estuary change more with time than with zooplankton species JF - Aquatic microbial ecology : international journal N2 - Zooplankton support distinct bacterial communities in high concentrations relative to the surrounding water, but little is known about how the compositions and functionalities of these bacterial communities change through time in relation to environmental conditions. We conducted a year-long field study of bacterial communities associated with common zooplankton groups as well as free-living bacterial communities in the York River, a tributary of Chesapeake Bay. Bacterial community genetic fingerprints and their carbon substrate usage were examined by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA and by Biolog EcoPlates, respectively. Zooplankton-associated communities were genetically distinct from free-living bacterial communities but utilized a similar array of carbon substrates. On average, bacteria associated with different zooplankton groups were genetically more similar to each other within each month (65.4% similarity) than to bacterial communities of the same zooplankton group from different months (28 to 30% similarity), which suggests the importance of ambient environmental conditions in shaping resident zooplankton-associated bacterial communities. Monthly changes in carbon substrate utilization were less variable for zooplankton-associated bacteria than for free-living bacteria, suggesting that the zooplankton microhabitat is more stable than the surrounding water and supports specific bacterial groups in the otherwise unfavorable conditions in the water column. KW - Zooplankton KW - Bacterial communities KW - Carbon substrates KW - Biolog EcoPlates KW - York River Y1 - 2014 U6 - https://doi.org/10.3354/ame01676 SN - 0948-3055 SN - 1616-1564 VL - 72 IS - 1 SP - 1 EP - 15 PB - Institute of Mathematical Statistics CY - Oldendorf Luhe ER - TY - JOUR A1 - Leunert, Franziska A1 - Eckert, Werner A1 - Paul, Andrea A1 - Gerhardt, Volkmar A1 - Grossart, Hans-Peter T1 - Phytoplankton response to UV-generated hydrogen peroxide from natural organic matter JF - Journal of plankton research N2 - In aquatic systems, natural organic matter (NOM) and in particular humic substances effectively absorb the ultraviolet (UV)/visible light spectrum of solar radiation and act as a photoprotective filter for organisms. Simultaneously, UV contributes to the generation of potentially harmful reactive oxygen species (ROS). Dose-response experiments were conducted on cyanobacteria and green algae with hydrogen peroxide (H2O2) as a long-lived representative of ROS. Delayed fluorescence (DF) decay kinetics was used as a non-invasive tool to follow changes of phytoplankton activity in real time. In order to investigate phototoxicity and photoprotection by NOM on phytoplankton, we exposed algae to UV-pre-irradiated NOM and direct UV excitation. Cyanobacteria responded to H2O2 concentrations as low as 10(-7) M, while green algae were 2 orders of magnitude less sensitive. UV irradiation of medium with NOM generated H2O2 concentrations of 1.5 x 10(-7) to 3.6 x 10(-7) M. When exposed to these concentrations, only the DF of cyanobacteria led to a measurable effect while that of green algae did not change. The addition of NOM protected all phytoplankton from direct UV irradiation, but cyanobacteria benefitted less. From this we conclude that UV-irradiated water enriched with NOM can adversely affect the physiology of cyanobacteria, but not of green algae, which might control phytoplankton composition and species-specific activities. KW - reactive oxygen species KW - Microcystis aeruginosa KW - green algae KW - delayed fluorescence KW - phycocyanin Y1 - 2014 U6 - https://doi.org/10.1093/plankt/fbt096 SN - 0142-7873 SN - 1464-3774 VL - 36 IS - 1 SP - 185 EP - 197 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Garcia, Sarahi L. A1 - McMahon, Katherine D. A1 - Grossart, Hans-Peter A1 - Warnecke, Falk T1 - Successful enrichment of the ubiquitous freshwater acI Actinobacteria JF - Environmental microbiology reports N2 - Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for >50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acIActinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed. Y1 - 2014 U6 - https://doi.org/10.1111/1758-2229.12104 SN - 1758-2229 VL - 6 IS - 1 SP - 21 EP - 27 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Dubovskaya, Olga P. A1 - Tang, Kam W. A1 - Gladyshev, Michail I. A1 - Kirillin, Georgiy A1 - Buseva, Zhanna A1 - Kasprzak, Peter A1 - Tolomeev, Aleksandr P. A1 - Grossart, Hans-Peter T1 - Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check JF - PLoS one N2 - Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0131431 SN - 1932-6203 VL - 10 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Glud, Ronnie N. A1 - Grossart, Hans-Peter A1 - Larsen, Morten A1 - Tang, Kam W. A1 - Arendt, Kristine E. A1 - Rysgaard, Soren A1 - Thamdrup, Bo A1 - Gissel Nielsen, Torkel T1 - Copepod carcasses as microbial hot spots for pelagic denitrification JF - Limnology and oceanography N2 - Copepods are exposed to a high non-predatory mortality and their decomposing carcasses act as microniches with intensified microbial activity. Sinking carcasses could thereby represent anoxic microenvironment sustaining anaerobic microbial pathways in otherwise oxic water columns. Using non-invasive O-2 imaging, we document that carcasses of Calanus finmarchicus had an anoxic interior even at fully air-saturated ambient O-2 level. The extent of anoxia gradually expanded with decreasing ambient O-2 levels. Concurrent microbial sampling showed the expression of nitrite reductase genes (nirS) in all investigated carcass samples and thereby documented the potential for microbial denitrification in carcasses. The nirS gene was occasionally expressed in live copepods, but not as consistently as in carcasses. Incubations of sinking carcasses in (15)NO3-amended seawater demonstrated denitrification, of which on average 34%+/- 17% (n=28) was sustained by nitrification. However, the activity was highly variable and was strongly dependent on the ambient O-2 levels. While denitrification was present even at air-saturation (302 mol L-1), the average carcass specific activity increased several orders of magnitude to approximate to 1 nmol d(-1) at 20% air-saturation (55 mol O-2 L-1) at an ambient temperature of 7 degrees C. Sinking carcasses of C. finmarchicus therefore represent hotspots of pelagic denitrification, but the quantitative importance as a sink for bioavailable nitrogen is strongly dependent on the ambient O-2 level. The importance of carcass associated denitrification could be highly significant in O-2 depleted environments such as Oxygen Minimum Zones (OMZ). Y1 - 2015 U6 - https://doi.org/10.1002/lno.10149 SN - 0024-3590 SN - 1939-5590 VL - 60 IS - 6 SP - 2026 EP - 2036 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bizic-Ionescu, Mina A1 - Zeder, Michael A1 - Ionescu, Danny A1 - Orlic, Sandi A1 - Fuchs, Bernhard M. A1 - Grossart, Hans-Peter A1 - Amann, Rudolf T1 - Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization JF - Environmental microbiology N2 - Marine and limnic particles are hotspots of organic matter mineralization significantly affecting biogeochemical element cycling. Fluorescence in-situ hybridization and pyrosequencing of 16S rRNA genes were combined to investigate bacterial diversity and community composition on limnic and coastal marine particles >5 and >10m respectively. Limnic particles were more abundant (average: 1x10(7)l(-1)), smaller in size (average areas: 471 versus 2050m(2)) and more densely colonized (average densities: 7.3 versus 3.6 cells 100m(-2)) than marine ones. Limnic particle-associated (PA) bacteria harboured Alphaproteobacteria and Betaproteobacteria, and unlike previously suggested sizeable populations of Gammaproteobacteria, Actinobacteria and Bacteroidetes. Marine particles were colonized by Planctomycetes and Betaproteobacteria additionally to Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria. Large differences in individual particle colonization could be detected. High-throughput sequencing revealed a significant overlap of PA and free-living (FL) bacteria highlighting an underestimated connectivity between both fractions. PA bacteria were in 14/21 cases more diverse than FL bacteria, reflecting a high heterogeneity in the particle microenvironment. We propose that a ratio of Chao 1 indices of PA/FL<1 indicates the presence of rather homogeneously colonized particles. The identification of different bacterial families enriched on either limnic or marine particles demonstrates that, despite the seemingly similar ecological niches, PA communities of both environments differ substantially. Y1 - 2015 U6 - https://doi.org/10.1111/1462-2920.12466 SN - 1462-2912 SN - 1462-2920 VL - 17 IS - 10 SP - 3500 EP - 3514 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Garcia, Sarahi L. A1 - Buck, Moritz A1 - McMahon, Katherine D. A1 - Grossart, Hans-Peter A1 - Eiler, Alexander A1 - Warnecke, Falk T1 - Auxotrophy and intrapopulation complementary in the "interactome' of a cultivated freshwater model community JF - Molecular ecology N2 - Microorganisms are usually studied either in highly complex natural communities or in isolation as monoclonal model populations that we manage to grow in the laboratory. Here, we uncover the biology of some of the most common and yet-uncultured bacteria in freshwater environments using a mixed culture from Lake Grosse Fuchskuhle. From a single shotgun metagenome of a freshwater mixed culture of low complexity, we recovered four high-quality metagenome-assembled genomes (MAGs) for metabolic reconstruction. This analysis revealed the metabolic interconnectedness and niche partitioning of these naturally dominant bacteria. In particular, vitamin- and amino acid biosynthetic pathways were distributed unequally with a member of Crenarchaeota most likely being the sole producer of vitamin B12 in the mixed culture. Using coverage-based partitioning of the genes recovered from a single MAG intrapopulation metabolic complementarity was revealed pointing to social' interactions for the common good of populations dominating freshwater plankton. As such, our MAGs highlight the power of mixed cultures to extract naturally occurring interactomes' and to overcome our inability to isolate and grow the microbes dominating in nature. KW - community KW - cultures KW - interactions KW - metagenomics KW - populations Y1 - 2015 U6 - https://doi.org/10.1111/mec.13319 SN - 0962-1083 SN - 1365-294X VL - 24 IS - 17 SP - 4449 EP - 4459 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Ionescu, Danny A1 - Bizic-Ionescu, Mina A1 - Khalili, Arzhang A1 - Malekmohammadi, Reza A1 - Morad, Reza Mohammad A1 - de Beer, Dirk A1 - Grossart, Hans-Peter T1 - A new tool for long-term studies of POM-bacteria interactions: overcoming the century-old Bottle Effect JF - Scientific reports N2 - Downward fluxes of particulate organic matter (POM) are the major process for sequestering atmospheric CO2 into aquatic sediments for thousands of years. Budget calculations of the biological carbon pump are heavily based on the ratio between carbon export (sedimentation) and remineralization (release to the atmosphere). Current methodologies determine microbial dynamics on POM using closed vessels, which are strongly biased towards heterotrophy due to rapidly changing water chemistry (Bottle Effect). We developed a flow-through rolling tank for long term studies that continuously maintains POM at near in-situ conditions. There, bacterial communities resembled in-situ communities and greatly differed from those in the closed systems. The active particle-associated community in the flow-through system was stable for days, contrary to hours previously reported for closed incubations. In contrast to enhanced respiration rates, the decrease in photosynthetic rates on particles throughout the incubation was much slower in our system than in traditional ones. These results call for reevaluating experimentally-derived carbon fluxes estimated using traditional methods. Y1 - 2015 U6 - https://doi.org/10.1038/srep14706 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Wannicke, Nicola A1 - Frindte, Katharina A1 - Gust, Giselher A1 - Liskow, Iris A1 - Wacker, Alexander A1 - Meyer, Andreas A1 - Grossart, Hans-Peter T1 - Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study JF - FEMS microbiology ecology N2 - In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 +/- 1.4 and 3.9 +/- 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 +/- 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 +/- 1.5 and 2.9 +/- 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump. KW - hydrostatic pressure KW - pressure chamber KW - piezophilic bacteria KW - deep-sea bacterial community KW - bacterial production KW - stable isotopes KW - membrane fatty acids Y1 - 2015 U6 - https://doi.org/10.1093/femsec/fiv036 SN - 0168-6496 SN - 1574-6941 VL - 91 IS - 5 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Ishida, Seiji A1 - Nozaki, Daiki A1 - Grossart, Hans-Peter A1 - Kagami, Maiko T1 - Novel basal, fungal lineages from freshwater phytoplankton and lake samples JF - Environmental microbiology reports N2 - Zoosporic fungal parasites are known to control the extent and development of blooms of numerous phytoplankton species. Despite the obvious importance of ecological interactions between parasitic fungi and their phytoplanktonic hosts, their diversity remains largely unknown due to methodological limitations. Here, a method to genetically analyse fungi directly from single, infected colonies of the phytoplanktonic host was applied to field samples of large diatom species from mesotrophic Lake Biwa and eutrophic Lake Inba, Japan. Although previous research on interaction between lacustrine fungi and large phytoplankton has mainly focused on the role of parasitic Chytridiomycota, our results revealed that fungi attached to large diatoms included not only members of Chytridiomycota, but also members of Aphelida, Cryptomycota and yeast. The fungi belonging to Chytridiomycota and Aphelida form novel, basal lineages. Environmental clone libraries also support the occurrence of these lineages in Japanese lakes. The presented method enables us to better characterize individual fungal specimens on phytoplankton, and thus facilitate and improve the investigation of ecological relationships between fungi and phytoplankton in aquatic ecosystems. Y1 - 2015 U6 - https://doi.org/10.1111/1758-2229.12268 SN - 1758-2229 VL - 7 IS - 3 SP - 435 EP - 441 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Spilling, Kristian A1 - Schulz, Kai G. A1 - Paul, Allanah J. A1 - Boxhammer, Tim A1 - Achterberg, Eric Pieter A1 - Hornick, Thomas A1 - Lischka, Silke A1 - Stuhr, Annegret A1 - Bermudez, Rafael A1 - Czerny, Jan A1 - Crawfurd, Kate A1 - Brussaard, Corina P. D. A1 - Grossart, Hans-Peter A1 - Riebesell, Ulf T1 - Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment JF - Biogeosciences N2 - About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95% was respired, similar to 1% ended up in the TPC (including export), and 5-25% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification. Y1 - 2016 U6 - https://doi.org/10.5194/bg-13-6081-2016 SN - 1726-4170 SN - 1726-4189 VL - 13 SP - 6081 EP - 6093 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Cepakova, Zuzana A1 - Hrouzek, Pavel A1 - Ziskova, Eva A1 - Nuyanzina-Boldareva, Ekaterina A1 - Sorf, Michal A1 - Kozlikova-Zapomelova, Eliska A1 - Salka, Ivette A1 - Grossart, Hans-Peter A1 - Koblizek, Michal T1 - High turnover rates of aerobic anoxygenic phototrophs in European freshwater lakes JF - Environmental microbiology N2 - Aerobic Anoxygenic Phototrophic (AAP) bacteria are bacteriochlorophyll (BChl) a -containing organisms which use light energy to supplement their predominantly heterotrophic metabolism. Here, we investigated mortality and growth rates of AAP bacteria in three different freshwater lakes in Central Europe: the mountain lake Plesne, the oligo-mesotrophic Lake Stechlin and the forest pond Huntov. The mortality of AAP bacteria was estimated from diel changes of BChl a fluorescence. Net and gross growth rates were calculated from the increases in AAP cell numbers. The gross growth rates of AAP bacteria ranged from 0.38 to 5.6 d(-1), with the highest values observed during summer months. Simultaneously, the rapidly growing AAP cells have to cope with an intense grazing pressure by both zooplankton and protists. The presented results document that during the day, gross growth usually surpased mortality. Our results indicate that AAP bacteria utilize light energy under natural conditions to maintain rapid growth rates, which are balanced by a generally intense grazing pressure. Y1 - 2016 U6 - https://doi.org/10.1111/1462-2920.13475 SN - 1462-2912 SN - 1462-2920 VL - 18 SP - 5063 EP - 5071 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Marce, Rafael A1 - George, Glen A1 - Buscarinu, Paola A1 - Deidda, Melania A1 - Dunalska, Julita A1 - de Eyto, Elvira A1 - Flaim, Giovanna A1 - Grossart, Hans-Peter A1 - Istvanovics, Vera A1 - Lenhardt, Mirjana A1 - Moreno-Ostos, Enrique A1 - Obrador, Biel A1 - Ostrovsky, Ilia A1 - Pierson, Donald C. A1 - Potuzak, Jan A1 - Poikane, Sandra A1 - Rinke, Karsten A1 - Rodriguez-Mozaz, Sara A1 - Staehr, Peter A. A1 - Sumberova, Katerina A1 - Waajen, Guido A1 - Weyhenmeyer, Gesa A. A1 - Weathers, Kathleen C. A1 - Zion, Mark A1 - Ibelings, Bas W. A1 - Jennings, Eleanor T1 - Automatic High Frequency Monitoring for Improved Lake and Reservoir Management JF - Frontiers in plant science N2 - Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied, by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide. Y1 - 2016 U6 - https://doi.org/10.1021/acs.est.6b01604 SN - 0013-936X SN - 1520-5851 VL - 50 SP - 10780 EP - 10794 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Premke, Katrin A1 - Attermeyer, Katrin A1 - Augustin, Jürgen A1 - Cabezas, Alvaro A1 - Casper, Peter A1 - Deumlich, Detlef A1 - Gelbrecht, Jörg A1 - Gerke, Horst H. A1 - Gessler, Arthur A1 - Großart, Hans-Peter A1 - Hilt, Sabine A1 - Hupfer, Michael A1 - Kalettka, Thomas A1 - Kayler, Zachary A1 - Lischeid, Gunnar A1 - Sommer, Michael A1 - Zak, Dominik T1 - The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters JF - Wiley Interdisciplinary Reviews : Water N2 - Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and between both landscape components. Here, we compiled data from the literature on C fluxes across the air–water interface from various landscape components. We simulated C emissions and uptake for five different scenarios which represent a gradient of increasing spatial heterogeneity within a temperate young moraine landscape: (I) a homogeneous landscape with only cropland and large lakes; (II) separation of the terrestrial domain into cropland and forest; (III) further separation into cropland, forest, and grassland; (IV) additional division of the aquatic area into large lakes and peatlands; and (V) further separation of the aquatic area into large lakes, peatlands, running waters, and small water bodies These simulations suggest that C fluxes at the landscape scale might depend on spatial heterogeneity and landscape diversity, among other factors. When we consider spatial heterogeneity and diversity alone, small inland waters appear to play a pivotal and previously underestimated role in landscape greenhouse gas emissions that may be regarded as C hot spots. Approaches focusing on the landscape scale will also enable improved projections of ecosystems’ responses to perturbations, e.g., due to global change and anthropogenic activities, and evaluations of the specific role individual landscape components play in regional C fluxes. WIREs Water 2016, 3:601–617. doi: 10.1002/wat2.1147 Y1 - 2016 U6 - https://doi.org/10.1002/wat2.1147 SN - 2049-1948 SN - 2049-1948 VL - 3 SP - 601 EP - 617 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Reverey, Florian A1 - Großart, Hans-Peter A1 - Premke, Katrin A1 - Lischeid, Gunnar T1 - Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Kettle holes as a specific group of isolated, small lentic freshwater systems (LFS) often are (i) hot spots of biogeochemical cycling and (ii) exposed to frequent sediment desiccation and rewetting. Their ecological functioning is greatly determined by immanent carbon and nutrient transformations. The objective of this review is to elucidate effects of a changing hydrological regime (i.e., dry-wet cycles) on carbon and nutrient cycling in kettle hole sediments. Generally, dry-wet cycles have the potential to increase C and N losses as well as P availability. However, their duration and frequency are important controlling factors regarding direction and intensity of biogeochemical and microbiological responses. To evaluate drought impacts on sediment carbon and nutrient cycling in detail requires the context of the LFS hydrological history. For example, frequent drought events induce physiological adaptation of exposed microbial communities and thus flatten metabolic responses, whereas rare events provoke unbalanced, strong microbial responses. Different potential of microbial resilience to drought stress can irretrievably change microbial communities and functional guilds, gearing cascades of functional responses. Hence, dry-wet events can shift the biogeochemical cycling of organic matter and nutrients to a new equilibrium, thus affecting the dynamic balance between carbon burial and mineralization in kettle holes. KW - Drought KW - Rewetting KW - Temporary pond KW - Kettle hole KW - Organic matter KW - Nitrogen KW - Phosphorus Y1 - 2016 U6 - https://doi.org/10.1007/s10750-016-2715-9 SN - 0018-8158 SN - 1573-5117 VL - 775 SP - 1 EP - 20 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Wurzbacher, Christian A1 - Warthmann, Norman A1 - Bourne, Elizabeth Charlotte A1 - Attermeyer, Katrin A1 - Allgaier, Martin A1 - Powell, Jeff R. A1 - Detering, Harald A1 - Mbedi, Susan A1 - Großart, Hans-Peter A1 - Monaghan, Michael T. T1 - High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany) JF - MycoKeys N2 - Freshwater fungi are a poorly studied ecological group that includes a high taxonomic diversity. Most studies on aquatic fungal diversity have focused on single habitats, thus the linkage between habitat heterogeneity and fungal diversity remains largely unexplored. We took 216 samples from 54 locations representing eight different habitats in the meso-oligotrophic, temperate Lake Stechlin in North-East Germany. These included the pelagic and littoral water column, sediments, and biotic substrates. We performed high throughput sequencing using the Roche 454 platform, employing a universal eukaryotic marker region within the large ribosomal subunit (LSU) to compare fungal diversity, community structure, and species turnover among habitats. Our analysis recovered 1027 fungal OTUs (97% sequence similarity). Richness estimates were highest in the sediment, biofilms, and benthic samples (189-231 OTUs), intermediate in water samples (42-85 OTUs), and lowest in plankton samples (8 OTUs). NMDS grouped the eight studied habitats into six clusters, indicating that community composition was strongly influenced by turnover among habitats. Fungal communities exhibited changes at the phylum and order levels along three different substrate categories from littoral to pelagic habitats. The large majority of OTUs (> 75%) could not be classified below the order level due to the lack of aquatic fungal entries in public sequence databases. Our study provides a first estimate of lake-wide fungal diversity and highlights the important contribution of habitat heterogeneity to overall diversity and community composition. Habitat diversity should be considered in any sampling strategy aiming to assess the fungal diversity of a water body. KW - Freshwater fungi KW - aquatic fungi KW - metabarcoding KW - LSU KW - GMYC KW - habitat specificity KW - Chytridiomycota KW - Cryptomycota KW - Rozellomycota KW - community ecology KW - lake ecosystem KW - biofilm KW - sediment KW - plankton KW - water sample KW - benthos KW - reed KW - fungal diversity Y1 - 2016 U6 - https://doi.org/10.3897/mycokeys.16.9646 SN - 1314-4057 SN - 1314-4049 VL - 41 SP - 17 EP - 44 PB - Pensoft Publ. CY - Sofia ER - TY - JOUR A1 - Srivastava, Abhishek A1 - McMahon, Katherine D. A1 - Stepanauskas, Ramunas A1 - Großart, Hans-Peter T1 - De novo synthesis and functional analysis of the phosphatase-encoding gene acI-B of uncultured Actinobacteria from Lake Stechlin (NE Germany) JF - International microbiology : official journal of the Spanish Society for Microbiology N2 - The National Center for Biotechnology Information [http://www.ncbi.nlm.nih. gov/guide/taxonomy/] database enlists more than 15,500 bacterial species. But this also includes a plethora of uncultured bacterial representations. Owing to their metabolism, they directly influence biogeochemical cycles, which underscores the the important status of bacteria on our planet. To study the function of a gene from an uncultured bacterium, we have undertaken a de novo gene synthesis approach. Actinobacteria of the acI-B subcluster are important but yet uncultured members of the bacterioplankton in temperate lakes of the northern hemisphere such as oligotrophic Lake Stechlin (NE Germany). This lake is relatively poor in phosphate (P) and harbors on average similar to 1.3 x 10(6) bacterial cells/ml, whereby Actinobacteria of the ac-I lineage can contribute to almost half of the entire bacterial community depending on seasonal variability. Single cell genome analysis of Actinobacterium SCGC AB141-P03, a member of the acI-B tribe in Lake Stechlin has revealed several phosphate-metabolizing genes. The genome of acI-B Actinobacteria indicates potential to degrade polyphosphate compound. To test for this genetic potential, we targeted the exoP-annotated gene potentially encoding polyphosphatase and synthesized it artificially to examine its biochemical role. Heterologous overexpression of the gene in Escherichia coli and protein purification revealed phosphatase activity. Comparative genome analysis suggested that homologs of this gene should be also present in other Actinobacteria of the acI lineages. This strategic retention of specialized genes in their genome provides a metabolic advantage over other members of the aquatic food web in a P-limited ecosystem. KW - acI-B in Actinobacteria KW - phosphatases KW - single cell genomics KW - phosphate limitation KW - Lake Stechlin KW - NE Germany Y1 - 2016 U6 - https://doi.org/10.2436/20.1501.01.262 SN - 1139-6709 SN - 1618-1905 VL - 19 SP - 39 EP - 47 PB - Institut d'Estudis Catalans CY - Barcelona ER - TY - JOUR A1 - Cuadrat, Rafael R. C. A1 - Ferrera, Isabel A1 - Großart, Hans-Peter A1 - Davila, Alberto M. R. T1 - Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo-Brazil) JF - OMICS : a journal of integrative biology N2 - Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean. Y1 - 2016 U6 - https://doi.org/10.1089/omi.2015.0142 SN - 1536-2310 SN - 1557-8100 VL - 20 SP - 76 EP - 87 PB - Liebert CY - New Rochelle ER - TY - JOUR A1 - Großart, Hans-Peter A1 - Wurzbacher, Christian A1 - James, Timothy Y. A1 - Kagami, Maiko T1 - Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi JF - Fungal ecology N2 - Our knowledge of zoosporic fungal phylogeny, physiology, and ecological functions, in particular their role in aquatic food web dynamics and biogeochemistry, is limited. The recent discovery of numerous dark matter fungi (DMF), i.e., uncultured and poorly known taxa belonging to early diverging branches of the fungal tree (namely the Rozellomycota and Chytridiomycota) calls for reconsideration of the phylogeny and ecology of zoosporic fungi. In this opinion paper, we summarize the exploration of new, recently discovered lineages of DMF and their implications for the ecology, evolution, and biogeography of the rapidly growing fungal tree. We also discuss possible ecological roles of zoosporic fungi in relation to recent methodological developments including single cell genomics and cultivation efforts. Finally, we suggest linking explorative with experimental research to gain deeper insights into the physiology and ecological functioning of zoosporic fungi DMF in aquatic habitats. (C) 2015 Elsevier Ltd and The British Mycological Society. All rights reserved. KW - Dark matter fungi KW - Zoosporic fungi KW - Fungal tree KW - Chytridiomycota KW - Rozellomycota KW - Fungal physiology and ecology KW - Aquatic habitats Y1 - 2016 U6 - https://doi.org/10.1016/j.funeco.2015.06.004 SN - 1754-5048 SN - 1878-0083 VL - 19 SP - 28 EP - 38 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Izhitskiy, A. S. A1 - Zavialov, P. O. A1 - Sapozhnikov, P. V. A1 - Kirillin, G. B. A1 - Grossart, Hans-Peter A1 - Kalinina, O. Y. A1 - Zalota, A. K. A1 - Goncharenko, I. V. A1 - Kurbaniyazov, A. K. T1 - Present state of the Aral Sea: diverging physical and biological characteristics of the residual basins JF - Scientific reports N2 - Latest data on the hydrophysical and biological state of the residual basins of the Aral Sea are presented and compared. Direct, quasi-simultaneous observations were carried out in the central part of the Western Large Aral Sea, the northern extremity of the Large Aral known as Chernyshev Bay, Lake Tshchebas, and the Small Aral Sea in October 2014. The Large Aral Sea and Lake Tshchebas transformed into hyperhaline water bodies with highly special taxocene structure. The Small Aral Sea was a relatively diverse brackish ecosystem, which was rather similar to the pre-desiccation environment. The Small Aral Sea and Lake Tshchebas exhibited a fully-mixed vertical structure, whereas the Western Large Aral Sea was strongly stratified. Our data show that during desiccation, different parts of the Aral Sea experienced different environmental conditions, resulting in qualitative and quantitative differences in the physical and biological regimes among the different residual basins. Y1 - 2016 U6 - https://doi.org/10.1038/srep23906 SN - 2045-2322 VL - 6 SP - 1435 EP - 1442 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Tang, Kam W. A1 - McGinnis, Daniel F. A1 - Ionescu, Danny A1 - Großart, Hans-Peter T1 - Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Active methane production in oxygenated lake waters challenges the long-standing paradigm that microbial methane production occurs only under anoxic conditions and forces us to rethink the ecology and environmental dynamics of this powerful greenhouse gas. Methane production in the upper oxic water layers places the methane source closer to the air water interface, where convective mixing and microbubble detrainment can lead to a methane efflux higher than that previously assumed. Microorganisms may produce methane in oxic environments by being equipped with enzymes to counteract the effects of molecular oxygen during methanogenesis or using alternative pathways that do not involve oxygen-sensitive enzymes. As this process appears to be influenced by thermal stratification, water transparency, and primary production, changes in lake ecology due to climate change will alter methane formation in oxic water layers, with far-reaching consequences for methane flux and climate feedback. Y1 - 2016 U6 - https://doi.org/10.1021/acs.estlett.6b00150 SN - 2328-8930 VL - 3 SP - 227 EP - 233 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Nausch, Monika A1 - Bach, Lennart Thomas A1 - Czerny, Jan A1 - Goldstein, Josephine A1 - Großart, Hans-Peter A1 - Hellemann, Dana A1 - Hornick, Thomas A1 - Achterberg, Eric Pieter A1 - Schulz, Kai-Georg A1 - Riebesell, Ulf T1 - Effects of CO2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea JF - Biogeosciences N2 - Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in many aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. The phosphorus dynamic was followed in a CO2-manipulation mesocosm experiment in the Storfjarden (western Gulf of Finland, Baltic Sea) in summer 2012 and was also studied in the surrounding fjord water. In all mesocosms as well as in surface waters of Storfjarden, dissolved organic phosphorus (DOP) concentrations of 0.26aEuro-+/- aEuro-0.03 and 0.23aEuro-+/- aEuro-0.04aEuro-A mu molaEuro-L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15aEuro-A +/- aEuro-0.02 in the mesocosms and 0.17aEuro-A +/- aEuro-0.07aEuro-A mu molaEuro-L-1 in the fjord. Transformation of PO4 into DOP appeared to be the main pathway of PO4 turnover. About 82aEuro-% of PO4 was converted into DOP whereby only 18aEuro-% of PO4 was transformed into particulate phosphorus (PP). PO4 uptake rates measured in the mesocosms ranged between 0.6 and 3.9aEuro-nmolaEuro-L(-1)aEuro-h(-1). About 86aEuro-% of them was realized by the size fraction < aEuro-3aEuro-A mu m. Adenosine triphosphate (ATP) uptake revealed that additional P was supplied from organic compounds accounting for 25-27aEuro-% of P provided by PO4 only. CO2 additions did not cause significant changes in phosphorus (P) pool sizes, DOP composition, and uptake of PO4 and ATP when the whole study period was taken into account. However, significant short-term effects were observed for PO4 and PP pool sizes in CO2 treatments > aEuro-1000aEuro-A mu atm during periods when phytoplankton biomass increased. In addition, we found significant relationships (e.g., between PP and Chl a) in the untreated mesocosms which were not observed under high fCO(2) conditions. Consequently, it can be hypothesized that the relationship between PP formation and phytoplankton growth changed with CO2 elevation. It can be deduced from the results, that visible effects of CO2 on P pools are coupled to phytoplankton growth when the transformation of PO4 into POP was stimulated. The transformation of PO4 into DOP on the other hand does not seem to be affected. Additionally, there were some indications that cellular mechanisms of P regulation might be modified under CO2 elevation changing the relationship between cellular constituents. Y1 - 2016 U6 - https://doi.org/10.5194/bg-13-3035-2016 SN - 1726-4170 SN - 1726-4189 VL - 13 SP - 3035 EP - 3050 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Rojas-Jimenez, Keilor A1 - Wurzbacher, Christian A1 - Bourne, Elizabeth Charlotte A1 - Chiuchiolo, Amy A1 - Priscu, John C. A1 - Grossart, Hans-Peter T1 - Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica JF - Scientific reports N2 - Antarctic ice-covered lakes are exceptional sites for studying the ecology of aquatic fungi under conditions of minimal human disturbance. In this study, we explored the diversity and community composition of fungi in five permanently covered lake basins located in the Taylor and Miers Valleys of Antarctica. Based on analysis of the 18S rRNA sequences, we showed that fungal taxa represented between 0.93% and 60.32% of the eukaryotic sequences. Cryptomycota and Chytridiomycota dominated the fungal communities in all lakes; however, members of Ascomycota, Basidiomycota, Zygomycota, and Blastocladiomycota were also present. Of the 1313 fungal OTUs identified, the two most abundant, belonging to LKM11 and Chytridiaceae, comprised 74% of the sequences. Significant differences in the community structure were determined among lakes, water depths, habitat features (i.e., brackish vs. freshwaters), and nucleic acids (DNA vs. RNA), suggesting niche differentiation. Network analysis suggested the existence of strong relationships among specific fungal phylotypes as well as between fungi and other eukaryotes. This study sheds light on the biology and ecology of basal fungi in aquatic systems. To our knowledge, this is the first report showing the predominance of early diverging lineages of fungi in pristine limnetic ecosystems, particularly of the enigmatic phylum Cryptomycota. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-15598-w SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Mestre, Mireia A1 - Ferrera, Isabel A1 - Borrull, Encarna A1 - Ortega-Retuerta, Eva A1 - Mbedi, Susan A1 - Grossart, Hans-Peter A1 - Gasol, Josep M. A1 - Sala, M. Montserrat T1 - Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum JF - Molecular ecology N2 - Biotic and abiotic particles shape the microspatial architecture that defines the microbial aquatic habitat, being particles highly variable in size and quality along oceanic horizontal and vertical gradients. We analysed the prokaryotic (bacterial and archaeal) diversity and community composition present in six distinct particle size classes ranging from the pico-to the microscale (0.2 to 200 lm). Further, we studied their variations along oceanographic horizontal (from the coast to open oceanic waters) and vertical (from the ocean surface into the meso-and bathypelagic ocean) gradients. In general, prokaryotic community composition was more variable with depth than in the transition from the coast to the open ocean. Comparing the six size-fractions, distinct prokaryotic communities were detected in each size-fraction, and whereas bacteria were more diverse in the larger size-fractions, archaea were more diverse in the smaller size-fractions. Comparison of prokaryotic community composition among particle size-fractions showed that most, but not all, taxonomic groups have a preference for a certain size-fraction sustained with depth. Species sorting, or the presence of diverse ecotypes with distinct size-fraction preferences, may explain why this trend is not conserved in all taxa. KW - attached KW - free-living KW - particulate matter KW - prokaryotic community KW - spatial variability Y1 - 2017 U6 - https://doi.org/10.1111/mec.14421 SN - 0962-1083 SN - 1365-294X VL - 26 SP - 6827 EP - 6840 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kettner, Marie Therese A1 - Rojas-Jimenez, Keilor A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Großart, Hans-Peter T1 - Microplastics alter composition of fungal communities in aquatic ecosystems JF - Environmental microbiology N2 - Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large. Y1 - 2017 U6 - https://doi.org/10.1111/1462-2920.13891 SN - 1462-2912 SN - 1462-2920 VL - 19 SP - 4447 EP - 4459 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Bjorneras, C. A1 - Weyhenmeyer, G. A. A1 - Evans, C. D. A1 - Gessner, M. O. A1 - Großart, Hans-Peter A1 - Kangur, K. A1 - Kokorite, I. A1 - Kortelainen, P. A1 - Laudon, H. A1 - Lehtoranta, J. A1 - Lottig, N. A1 - Monteith, D. T. A1 - Noges, P. A1 - Noges, T. A1 - Oulehle, F. A1 - Riise, G. A1 - Rusak, J. A. A1 - Raike, A. A1 - Sire, J. A1 - Sterling, S. A1 - Kritzberg, E. S. T1 - Widespread Increases in Iron Concentration in European and North American Freshwaters JF - Global biogeochemical cycles N2 - Recent reports of increasing iron (Fe) concentrations in freshwaters are of concern, given the fundamental role of Fe in biogeochemical processes. Still, little is known about the frequency and geographical distribution of Fe trends or about the underlying drivers. We analyzed temporal trends of Fe concentrations across 340 water bodies distributed over 10 countries in northern Europe and North America in order to gain a clearer understanding of where, to what extent, and why Fe concentrations are on the rise. We found that Fe concentrations have significantly increased in 28% of sites, and decreased in 4%, with most positive trends located in northern Europe. Regions with rising Fe concentrations tend to coincide with those with organic carbon (OC) increases. Fe and OC increases may not be directly mechanistically linked, but may nevertheless be responding to common regional-scale drivers such as declining sulfur deposition or hydrological changes. A role of hydrological factors was supported by covarying trends in Fe and dissolved silica, as these elements tend to stem from similar soil depths. A positive relationship between Fe increases and conifer cover suggests that changing land use and expanded forestry could have contributed to enhanced Fe export, although increases were also observed in nonforested areas. We conclude that the phenomenon of increasing Fe concentrations is widespread, especially in northern Europe, with potentially significant implications for wider ecosystem biogeochemistry, and for the current browning of freshwaters. Y1 - 2017 U6 - https://doi.org/10.1002/2017GB005749 SN - 0886-6236 SN - 1944-9224 VL - 31 SP - 1488 EP - 1500 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Attermeyer, Katrin A1 - Grossart, Hans-Peter A1 - Flury, Sabine A1 - Premke, Katrin T1 - Bacterial processes and biogeochemical changes in the water body of kettle holes - mainly driven by autochthonous organic matter? JF - Aquatic sciences : research across boundaries N2 - Kettle holes are small inland waters formed from glacially-created depressions often situated in agricultural landscapes. Due to their high perimeter-to-area ratio facilitating a high aquatic-terrestrial coupling, kettle holes can accumulate high concentrations of organic carbon and nutrients, fueling microbial activities and turnover rates. Thus, they represent hotspots of carbon turnover in the landscape, but their bacterial activities and controlling factors have not been well investigated. Therefore, we aimed to assess the relative importance of various environmental factors on bacterial and biogeochemical processes in the water column of kettle holes and to disentangle their variations. In the water body of ten kettle holes in north-eastern Germany, we measured several physico-chemical and biological parameters such as carbon quantity and quality, as well as bacterial protein production (BP) and community respiration (CR) in spring, early summer and autumn 2014. Particulate organic matter served as an indicator of autochthonous production and represented an important parameter to explain variations in BP and CR. This notion is supported by qualitative absorbance indices of dissolved molecules in water samples and C: N ratios of the sediments, which demonstrate high fractions of autochthonous organic matter (OM) in the studied kettle holes. In contrast, dissolved chemical parameters were less important for bacterial activities although they revealed strong differences throughout the growing season. Pelagic bacterial activities and dynamics might thus be regulated by autochthonous OM in kettle holes implying a control of important biogeochemical processes by internal primary production rather than facilitated exchange with the terrestrial surrounding due to a high perimeter-to-area ratio. KW - Bacterial production KW - Carbon turnover KW - Growth efficiency KW - Ponds KW - Respiration KW - DOC quality KW - LC-OCD Y1 - 2017 U6 - https://doi.org/10.1007/s00027-017-0528-1 SN - 1015-1621 SN - 1420-9055 VL - 79 SP - 675 EP - 687 PB - Springer CY - Basel ER - TY - JOUR A1 - Hornak, Karel A1 - Kasalicky, Vojtech A1 - Simek, Karel A1 - Großart, Hans-Peter T1 - Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria JF - Environmental microbiology N2 - We investigated changes in quality and quantity of extracellular and biomass-derived organic matter (OM) from three axenic algae (genera Rhodomonas, Chlamydomonas, Coelastrum) during growth of Limnohabitans parvus, Limnohabitans planktonicus and Polynucleobacter acidiphobus representing important clusters of freshwater planktonic Betaproteobacteria. Total extracellular and biomass-derived OM concentrations from each alga were approximately 20 mg l(-1) and 1 mg l(-1) respectively, from which up to 9% could be identified as free carbohydrates, polyamines, or free and combined amino acids. Carbohydrates represented 54%-61% of identified compounds of the extracellular OM from each alga. In biomass-derived OM of Rhodomonas and Chlamydomonas 71%-77% were amino acids and polyamines, while in that of Coelastrum 85% were carbohydrates. All bacteria grew on alga-derived OM of Coelastrum, whereas only Limnohabitans strains grew on OM from Rhodomonas and Chlamydomonas. Bacteria consumed 24%-76% and 38%-82% of all identified extracellular and biomass-derived OM compounds respectively, and their consumption was proportional to the concentration of each OM compound in the different treatments. The bacterial biomass yield was higher than the total identifiable OM consumption indicating that bacteria also utilized other unidentified alga-derived OM compounds. Bacteria, however, also produced specific OM compounds suggesting enzymatic polymer degradation or de novo exudation. Y1 - 2017 U6 - https://doi.org/10.1111/1462-2920.13900 SN - 1462-2912 SN - 1462-2920 VL - 19 SP - 4519 EP - 4535 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Amalfitano, Stefano A1 - Corno, Gianluca A1 - Eckert, Ester A1 - Fazi, Stefano A1 - Ninio, Shira A1 - Callieri, Cristiana A1 - Grossart, Hans-Peter A1 - Eckert, Werner T1 - Tracing particulate matter and associated microorganisms in freshwaters JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Sediment resuspension represents a key process in all natural aquatic systems, owing to its role in nutrient cycling and transport of potential contaminants. Although suspended solids are generally accepted as an important quality parameter, current monitoring programs cover quantitative aspects only. Established methodologies do not provide information on origin, fate, and risks associated with uncontrolled inputs of solids in waters. Here we discuss the analytical approaches to assess the occurrence and ecological relevance of resuspended particulate matter in freshwaters, with a focus on the dynamics of associated contaminants and microorganisms. Triggered by the identification of specific physical-chemical traits and community structure of particle-associated microorganisms, recent findings suggest that a quantitative determination of microorganisms can be reasonably used to trace the origin of particulate matter by means of nucleic acid-based assays in different aquatic systems. KW - Total suspended solids KW - Resuspended particulate KW - Turbidity KW - Sediment traps KW - Particle-associated microorganisms KW - Pathogens Y1 - 2017 U6 - https://doi.org/10.1007/s10750-017-3260-x SN - 0018-8158 SN - 1573-5117 VL - 800 SP - 145 EP - 154 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Tang, Kam W. A1 - Flury, Sabine A1 - Grossart, Hans-Peter A1 - McGinnis, Daniel F. T1 - The Chaoborus pump: Migrating phantom midge larvae sustain hypolimnetic oxygen deficiency and nutrient internal loading in lakes JF - Water research N2 - Hypolimnetic oxygen demand in lakes is often assumed to be driven mainly by sediment microbial processes, while the role of Chaoborus larvae, which are prevalent in eutrophic lakes with hypoxic to anoxic bottoms, has been overlooked. We experimentally measured the respiration rates of C flavicans at different temperatures yielding a Q(10) of 1.44-1.71 and a respiratory quotient of 0.84-0.98. Applying the experimental data in a system analytical approach, we showed that migrating Chaoborus larvae can significantly add to the water column and sediment oxygen demand, and contribute to the observed linear relationship between water column respiration and depth. The estimated phosphorus excretion by Chaoborus in sediment is comparable in magnitude to the required phosphorus loading for eutrophication. Migrating Chaoborus larvae thereby essentially trap nutrients between the water column and the sediment, and this continuous internal loading of nutrients would delay lake remediation even when external inputs are stopped. (C) 2017 Elsevier Ltd. All rights reserved. KW - Chaoborus KW - Eutrophication KW - Oxygen KW - Nutrient KW - Remediation Y1 - 2017 U6 - https://doi.org/10.1016/j.watres.2017.05.058 SN - 0043-1354 VL - 122 SP - 36 EP - 41 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Ionescu, Danny A1 - Bizic-Ionescu, Mina A1 - De Maio, Nicola A1 - Cypionka, Heribert A1 - Grossart, Hans-Peter T1 - Community-like genome in single cells of the sulfur bacterium Achromatium oxaliferum JF - Nature Communications Y1 - 2017 U6 - https://doi.org/10.1038/s41467-017-00342-9 SN - 2041-1723 VL - 8 SP - 9193 EP - 9205 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lau, Maximilian P. A1 - Hupfer, Michael A1 - Grossart, Hans-Peter T1 - Reduction-oxidation cycles of organic matter increase bacterial activity in the pelagic oxycline JF - Environmental microbiology reports N2 - Dissolved organic matter (DOM) in aquatic ecosystems contains redox-active moieties, which are prone to oxidation and reduction reactions. Oxidized moieties feature reduction potentials E-h, so that the moieties may be used as terminal electron acceptors (TEAs) in microbial respiration with a thermodynamic energy yield between nitrate and sulfate reduction. Here, we study the response of pelagic freshwater bacteria to exposure to native DOM with varying availabilities of oxidized moieties and hence redox state. Our results show that the prevalence of oxidized DOM favors microbial production and growth in anoxic waters. Reduced DOM in stratified lakes may be oxidized when fluctuations of the oxycline expose DOM in previously anoxic water to epilimnetic oxygen. The resulting oxidized DOM may be rapidly used as TEAs in microbial respiration during subsequent periods of anoxia. We further investigate if the prevalence of these organic electron sinks in anaerobic incubations can induce changes in the microbial community. Our results reveal that DOM traversing transient redox interfaces selects for species that profit from such spatially confined and cyclically restored TEA reservoirs. Y1 - 2017 U6 - https://doi.org/10.1111/1758-2229.12526 SN - 1758-2229 VL - 9 SP - 257 EP - 267 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Gubelit, Yulia I. A1 - Grossart, Hans-Peter T1 - New Methods, New Concepts BT - What Can Be Applied to Freshwater Periphyton? JF - Frontiers in Microbiology N2 - Microbial interactions play an essential role in aquatic ecosystems and are of the great interest for both marine and freshwater ecologists. Recent development of new technologies and methods allowed to reveal many functional mechanisms and create new concepts. Yet, many fundamental aspects of microbial interactions have been almost exclusively studied for marine pelagic and benthic ecosystems. These studies resulted in a formulation of the Black Queen Hypothesis, a development of the phycosphere concept for pelagic communities, and a realization of microbial communication as a key mechanism for microbial interactions. In freshwater ecosystems, especially for periphyton communities, studies focus mainly on physiology, biodiversity, biological indication, and assessment, but the many aspects of microbial interactions are neglected to a large extent. Since periphyton plays a great role for aquatic nutrient cycling, provides the basis for water purification, and can be regarded as a hotspot of microbial biodiversity, we highlight that more in-depth studies on microbial interactions in periphyton are needed to improve our understanding on functioning of freshwater ecosystems. In this paper we first present an overview on recent concepts (e.g., the “Black Queen Hypothesis”) derived from state-of-the-art OMICS methods including metagenomics, metatranscriptomics, and metabolomics. We then point to the avenues how these methods can be applied for future studies on biodiversity and the ecological role of freshwater periphyton, a yet largely neglected component of many freshwater ecosystems. KW - freshwater KW - lake periphyton KW - microbial interactions KW - Black Queen Hypothesis KW - OMICs tools Y1 - 2020 U6 - https://doi.org/10.3389/fmicb.2020.01275 SN - 1664-302X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Numberger, Daniela A1 - Dreier, Carola A1 - Vullioud, Colin A1 - Gabriel, Guelsah A1 - Greenwood, Alex D. A1 - Grossart, Hans-Peter T1 - Correction: Recovery of influenza A viruses from lake water and sediments by experimental inoculation (vol 14, e0216880, 2019) T2 - PLoS one Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0218882 SN - 1932-6203 VL - 14 IS - 6 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Block, Benjamin D. A1 - Denfeld, Blaize A. A1 - Stockwell, Jason D. A1 - Flaim, Giovanna A1 - Grossart, Hans-Peter A1 - Knoll, Lesley B. A1 - Maier, Dominique B. A1 - North, Rebecca L. A1 - Rautio, Milla A1 - Rusak, James A. A1 - Sadro, Steve A1 - Weyhenmeyer, Gesa A. A1 - Bramburger, Andrew J. A1 - Branstrator, Donn K. A1 - Salonen, Kalevi A1 - Hampton, Stephanie E. T1 - The unique methodological challenges of winter limnology JF - Limnology and Oceanography: Methods N2 - Winter is an important season for many limnological processes, which can range from biogeochemical transformations to ecological interactions. Interest in the structure and function of lake ecosystems under ice is on the rise. Although limnologists working at polar latitudes have a long history of winter work, the required knowledge to successfully sample under winter conditions is not widely available and relatively few limnologists receive formal training. In particular, the deployment and operation of equipment in below 0 degrees C temperatures pose considerable logistical and methodological challenges, as do the safety risks of sampling during the ice-covered period. Here, we consolidate information on winter lake sampling and describe effective methods to measure physical, chemical, and biological variables in and under ice. We describe variation in snow and ice conditions and discuss implications for sampling logistics and safety. We outline commonly encountered methodological challenges and make recommendations for best practices to maximize safety and efficiency when sampling through ice or deploying instruments in ice-covered lakes. Application of such practices over a broad range of ice-covered lakes will contribute to a better understanding of the factors that regulate lakes during winter and how winter conditions affect the subsequent ice-free period. Y1 - 2018 U6 - https://doi.org/10.1002/lom3.10295 SN - 1541-5856 VL - 17 IS - 1 SP - 42 EP - 57 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Steger, Kristin A1 - Kim, Amy Taeyen A1 - Ganzert, Lars A1 - Grossart, Hans-Peter A1 - Smart, David R. T1 - Floodplain soil and its bacterial composition are strongly affected by depth JF - FEMS microbiology ecology N2 - We studied bacterial abundance and community structure of five soil cores using high-throughput sequencing of the 16S rRNA gene. Shifts in the soil bacterial composition were more pronounced within a vertical profile than across the landscape. Soil organic carbon (SOC) and nitrogen (N) concentrations decreased exponentially with soil depth and revealed a buried carbon-rich horizon between 0.8 and 1.3 m across all soil cores. This buried horizon was phylogenetically similar to its surrounding subsoils supporting the idea that the type of carbon, not necessarily the amount of carbon was driving the apparent similarities. In contrast to other studies, Nitrospirae was one of our major phyla with relatively high abundances throughout the soil profile except for the surface soil. Although depth is the major driver shaping soil bacterial community structure, positive correlations with SOC and N concentrations, however, were revealed with the bacterial abundance of Acidobacteria, one of the major, and Gemmatimonadetes, one of the minor phyla in our study. Our study showed that bacterial diversity in soils below 2.0 m can be still as high if not higher than in the above laying subsurface soil suggesting that various bacteria throughout the soil profile influence major biogeochemical processes in floodplain soils. KW - 16S rRNA gene sequencing KW - alluvial soil KW - buried horizon KW - Nitrospirae KW - soil bacterial diversity KW - SOC Y1 - 2019 U6 - https://doi.org/10.1093/femsec/fiz014 SN - 0168-6496 SN - 1574-6941 VL - 95 IS - 3 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Srivastava, Abhishek A1 - Murugaiyan, Jayaseelan A1 - Garcia, Juan A. L. A1 - De Corte, Daniele A1 - Hoetzinger, Matthias A1 - Eravci, Murat A1 - Weise, Christoph A1 - Kumar, Yadhu A1 - Roesler, Uwe A1 - Hahn, Martin W. A1 - Grossart, Hans-Peter T1 - Combined Methylome, Transcriptome and Proteome Analyses Document Rapid Acclimatization of a Bacterium to Environmental Changes JF - Frontiers in Microbiology N2 - Polynucleobacter asymbioticus strain QLW-P1DMWA-1T represents a group of highly successful heterotrophic ultramicrobacteria that is frequently very abundant (up to 70% of total bacterioplankton) in freshwater habitats across all seven continents. This strain was originally isolated from a shallow Alpine pond characterized by rapid changes in water temperature and elevated UV radiation due to its location at an altitude of 1300 m. To elucidate the strain’s adjustment to fluctuating environmental conditions, we recorded changes occurring in its transcriptomic and proteomic profiles under contrasting experimental conditions by simulating thermal conditions in winter and summer as well as high UV irradiation. To analyze the potential connection between gene expression and regulation via methyl group modification of the genome, we also analyzed its methylome. The methylation pattern differed between the three treatments, pointing to its potential role in differential gene expression. An adaptive process due to evolutionary pressure in the genus was deduced by calculating the ratios of non-synonymous to synonymous substitution rates for 20 Polynucleobacter spp. genomes obtained from geographically diverse isolates. The results indicate purifying selection. KW - DNA modification KW - gene expression KW - freshwater heterotrophic bacteria KW - UV radiation KW - purifying selection Y1 - 2020 U6 - https://doi.org/10.3389/fmicb.2020.544785 SN - 1664-302X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Hornick, Thomas A1 - Bach, Lennart T. A1 - Crawfurd, Katharine J. A1 - Spilling, Kristian A1 - Achterberg, Eric Pieter A1 - Woodhouse, Jason Nicholas A1 - Schulz, Kai Georg A1 - Brussaard, Corina P. D. A1 - Riebesell, Ulf A1 - Grossart, Hans-Peter T1 - Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 667 KW - northern Baltic Sea KW - inorganic nutrients KW - mesocosm experiment KW - elevated CO2 KW - heterotrophic bacteria KW - organic-carbon KW - bacterioplankton KW - seawater KW - growth KW - temperature Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417126 SN - 1866-8372 IS - 667 ER - TY - GEN A1 - Fabian, Jenny A1 - Zlatanović, Sanja A1 - Mutz, Michael A1 - Grossart, Hans-Peter A1 - Geldern, Robert van A1 - Ulrich, Andreas A1 - Gleixner, Gerd A1 - Premke, Katrin T1 - Environmental control on microbial turnover of leaf carbon in streams BT - ecological function of phototrophic-heterotrophic interactions T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photo-heterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a 13C-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 693 KW - algae KW - bacteria KW - microbial interactions KW - 13C stable isotopes KW - PLFA KW - terrestrial carbon KW - streambed structure KW - light Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426336 SN - 1866-8372 IS - 693 ER - TY - GEN A1 - Nausch, Monika A1 - Bach, Lennart Thomas A1 - Czerny, Jan A1 - Goldstein, Josephine A1 - Grossart, Hans-Peter A1 - Hellemann, Dana A1 - Hornick, Thomas A1 - Achterberg, Eric Pieter A1 - Schulz, Kai Georg A1 - Riebesell, Ulf T1 - Effects of CO 2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea T2 - Biogeosciences N2 - Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in many aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. The phosphorus dynamic was followed in a CO2-manipulation mesocosm experiment in the Storfjarden (western Gulf of Finland, Baltic Sea) in summer 2012 and was also studied in the surrounding fjord water. In all mesocosms as well as in surface waters of Storfjarden, dissolved organic phosphorus (DOP) concentrations of 0.26aEuro-+/- aEuro-0.03 and 0.23aEuro-+/- aEuro-0.04aEuro-A mu molaEuro-L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15aEuro-A +/- aEuro-0.02 in the mesocosms and 0.17aEuro-A +/- aEuro-0.07aEuro-A mu molaEuro-L-1 in the fjord. Transformation of PO4 into DOP appeared to be the main pathway of PO4 turnover. About 82aEuro-% of PO4 was converted into DOP whereby only 18aEuro-% of PO4 was transformed into particulate phosphorus (PP). PO4 uptake rates measured in the mesocosms ranged between 0.6 and 3.9aEuro-nmolaEuro-L(-1)aEuro-h(-1). About 86aEuro-% of them was realized by the size fraction < aEuro-3aEuro-A mu m. Adenosine triphosphate (ATP) uptake revealed that additional P was supplied from organic compounds accounting for 25-27aEuro-% of P provided by PO4 only. CO2 additions did not cause significant changes in phosphorus (P) pool sizes, DOP composition, and uptake of PO4 and ATP when the whole study period was taken into account. However, significant short-term effects were observed for PO4 and PP pool sizes in CO2 treatments > aEuro-1000aEuro-A mu atm during periods when phytoplankton biomass increased. In addition, we found significant relationships (e.g., between PP and Chl a) in the untreated mesocosms which were not observed under high fCO(2) conditions. Consequently, it can be hypothesized that the relationship between PP formation and phytoplankton growth changed with CO2 elevation. It can be deduced from the results, that visible effects of CO2 on P pools are coupled to phytoplankton growth when the transformation of PO4 into POP was stimulated. The transformation of PO4 into DOP on the other hand does not seem to be affected. Additionally, there were some indications that cellular mechanisms of P regulation might be modified under CO2 elevation changing the relationship between cellular constituents. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 424 KW - Eastern Gotland basin KW - nodularia spumigena KW - organic-matter KW - filamentous cyanobacteria KW - Ocean acidification KW - nitrogen-fixation KW - PCO(2) levels KW - elevated CO2 KW - Peece-III KW - seawater Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410274 ER - TY - GEN A1 - Spilling, Kristian A1 - Schulz, Kai Georg A1 - Paul, Allanah J. A1 - Boxhammer, Tim A1 - Achterberg, Eric Pieter A1 - Hornick, Thomas A1 - Lischka, Silke A1 - Stuhr, Annegret A1 - Bermúdez, Rafael A1 - Czerny, Jan A1 - Crawfurd, Kate A1 - Brussaard, Corina P. D. A1 - Grossart, Hans-Peter A1 - Riebesell, Ulf T1 - Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95% was respired, similar to 1% ended up in the TPC (including export), and 5-25% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 544 KW - tecdissolved organic nitrogen KW - sea plankton community KW - high CO2 ocean KW - Baltic Sea KW - elevated CO2 KW - marine viruses KW - Atlantic-ocean KW - Natural-waters KW - Flow-cytometry KW - technical note Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411835 SN - 1866-8372 IS - 544 ER - TY - GEN A1 - Frindte, Katharina A1 - Allgaier, Martin A1 - Grossart, Hans-Peter A1 - Eckert, Werner T1 - Microbial response to experimentally controlled redox transitions at the sediment water interface T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The sediment-water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment-water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment-water interface. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 509 KW - anaerobic methane oxidation KW - oligotrophic lake Stechlin KW - ribosomal RNA KW - vertical-distribution KW - coastal sediments KW - sulfate reduction KW - Shallow Lake KW - bacteria KW - carbon KW - communities Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408464 SN - 1866-8372 IS - 509 ER - TY - GEN A1 - Bálint, Miklós A1 - Márton, Orsolya A1 - Schatz, Marlene A1 - Düring, Rolf-Alexander A1 - Grossart, Hans-Peter T1 - Proper experimental design requires randomization/balancing of molecular ecology experiments T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Properly designed (randomized and/or balanced) experiments are standard in ecological research. Molecular methods are increasingly used in ecology, but studies generally do not report the detailed design of sample processing in the laboratory. This may strongly influence the interpretability of results if the laboratory procedures do not account for the confounding effects of unexpected laboratory events. We demonstrate this with a simple experiment where unexpected differences in laboratory processing of samples would have biased results if randomization in DNA extraction and PCR steps do not provide safeguards. We emphasize the need for proper experimental design and reporting of the laboratory phase of molecular ecology research to ensure the reliability and interpretability of results. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 616 KW - batch effect KW - bias KW - DNA extraction KW - environmental DNA KW - laboratory practice KW - lake community KW - metabarcoding KW - nondemonic intrusions KW - PCR KW - sediment Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423878 SN - 1866-8372 IS - 616 ER - TY - JOUR A1 - Aichner, Bernhard A1 - Dubbert, David A1 - Kiel, Christine A1 - Kohnert, Katrin A1 - Ogashawara, Igor A1 - Jechow, Andreas A1 - Harpenslager, Sarah-Faye A1 - Hölker, Franz A1 - Nejstgaard, Jens Christian A1 - Grossart, Hans-Peter A1 - Singer, Gabriel A1 - Wollrab, Sabine A1 - Berger, Stella Angela T1 - Spatial and seasonal patterns of water isotopes in northeastern German lakes JF - Earth system science data : ESSD N2 - Water stable isotopes (delta O-18 and delta H-2) were analyzed in samples collected in lakes, associated with riverine systems in northeastern Germany, throughout 2020. The dataset (Aichner et al., 2021; https://doi.org/10.1594/PANGAEA.935633) is derived from water samples collected at (a) lake shores (sampled in March and July 2020), (b) buoys which were temporarily installed in deep parts of the lake (sampled monthly from March to October 2020), (c) multiple spatially distributed spots in four selected lakes (in September 2020), and (d) the outflow of Muggelsee (sampled biweekly from March 2020 to January 2021). At shores, water was sampled with a pipette from 40-60 cm below the water surface and directly transferred into a measurement vial, while at buoys a Limnos water sampler was used to obtain samples from 1 m below the surface. Isotope analysis was conducted at IGB Berlin, using a Picarro L2130-i cavity ring-down spectrometer, with a measurement uncertainty of < 0.15 parts per thousand (delta O-18) and < 0.0 parts per thousand (delta H-2). The data give information about the vegetation period and the full seasonal isotope amplitude in the sampled lakes and about spatial isotope variability in different branches of the associated riverine systems. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-1857-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 4 SP - 1857 EP - 1867 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Srivastava, Abhishek A1 - Murugaiyan, Jayaseelan A1 - Garcia, Juan A. L. A1 - De Corte, Daniele A1 - Hoetzinger, Matthias A1 - Eravci, Murat A1 - Weise, Christoph A1 - Kumar, Yadhu A1 - Roesler, Uwe A1 - Hahn, Martin W. A1 - Grossart, Hans-Peter T1 - Combined Methylome, Transcriptome and Proteome Analyses Document Rapid Acclimatization of a Bacterium to Environmental Changes T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Polynucleobacter asymbioticus strain QLW-P1DMWA-1T represents a group of highly successful heterotrophic ultramicrobacteria that is frequently very abundant (up to 70% of total bacterioplankton) in freshwater habitats across all seven continents. This strain was originally isolated from a shallow Alpine pond characterized by rapid changes in water temperature and elevated UV radiation due to its location at an altitude of 1300 m. To elucidate the strain’s adjustment to fluctuating environmental conditions, we recorded changes occurring in its transcriptomic and proteomic profiles under contrasting experimental conditions by simulating thermal conditions in winter and summer as well as high UV irradiation. To analyze the potential connection between gene expression and regulation via methyl group modification of the genome, we also analyzed its methylome. The methylation pattern differed between the three treatments, pointing to its potential role in differential gene expression. An adaptive process due to evolutionary pressure in the genus was deduced by calculating the ratios of non-synonymous to synonymous substitution rates for 20 Polynucleobacter spp. genomes obtained from geographically diverse isolates. The results indicate purifying selection. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1011 KW - DNA modification KW - gene expression KW - freshwater heterotrophic bacteria KW - UV radiation KW - purifying selection Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-481993 SN - 1866-8372 IS - 1011 ER - TY - GEN A1 - Gubelit, Yulia I. A1 - Grossart, Hans-Peter T1 - New Methods, New Concepts BT - What Can Be Applied to Freshwater Periphyton? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Microbial interactions play an essential role in aquatic ecosystems and are of the great interest for both marine and freshwater ecologists. Recent development of new technologies and methods allowed to reveal many functional mechanisms and create new concepts. Yet, many fundamental aspects of microbial interactions have been almost exclusively studied for marine pelagic and benthic ecosystems. These studies resulted in a formulation of the Black Queen Hypothesis, a development of the phycosphere concept for pelagic communities, and a realization of microbial communication as a key mechanism for microbial interactions. In freshwater ecosystems, especially for periphyton communities, studies focus mainly on physiology, biodiversity, biological indication, and assessment, but the many aspects of microbial interactions are neglected to a large extent. Since periphyton plays a great role for aquatic nutrient cycling, provides the basis for water purification, and can be regarded as a hotspot of microbial biodiversity, we highlight that more in-depth studies on microbial interactions in periphyton are needed to improve our understanding on functioning of freshwater ecosystems. In this paper we first present an overview on recent concepts (e.g., the “Black Queen Hypothesis”) derived from state-of-the-art OMICS methods including metagenomics, metatranscriptomics, and metabolomics. We then point to the avenues how these methods can be applied for future studies on biodiversity and the ecological role of freshwater periphyton, a yet largely neglected component of many freshwater ecosystems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 969 KW - freshwater KW - lake periphyton KW - microbial interactions KW - Black Queen Hypothesis KW - OMICs tools Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474286 SN - 1866-8372 IS - 969 ER - TY - JOUR A1 - Attermeyer, Katrin A1 - Premke, Katrin A1 - Hornick, Thomas A1 - Hilt, Sabine A1 - Grossart, Hans-Peter T1 - Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats JF - Ecology : a publication of the Ecological Society of America N2 - In aquatic systems, terrestrial dissolved organic matter (t-DOM) is known to stimulate bacterial activities in the water column, but simultaneous effects of autumnal leaf input on water column and sediment microbial dynamics in littoral zones of lakes remain largely unknown. The study's objective was to determine the effects of leaf litter on bacterial metabolism in the littoral water and sediment, and subsequently, the consequences for carbon cycling and food web dynamics. Therefore, in late fall, we simultaneously measured water and sediment bacterial metabolism in the littoral zone of a temperate shallow lake after adding terrestrial particulate organic matter (t-POM), namely, maize leaves. To better evaluate bacterial production (BP) and community respiration (CR) in sediments, we incubated sediment cores with maize leaves of different quality (nonleached and leached) under controlled laboratory conditions. Additionally, to quantify the incorporated leaf carbon into microbial biomass, we determined carbon isotopic ratios of fatty acids from sediment and leaf-associated microbes from a laboratory experiment using C-13-enriched beech leaves. The concentrations of dissolved organic carbon (DOC) increased significantly in the lake after the addition of maize leaves, accompanied by a significant increase in water BP. In contrast, sediment BP declined after an initial peak, showing no positive response to t-POM addition. Sediment BP and CR were also not stimulated by t-POM in the laboratory experiment, either in short-term or in long-term incubations, except for a short increase in CR after 18 hours. However, this increase might have reflected the metabolism of leaf-associated microorganisms. We conclude that the leached t-DOM is actively incorporated into microbial biomass in the water column but that the settling leached t-POM (t-POML) does not enter the food web via sediment bacteria. Consequently, t-POML is either buried in the sediment or introduced into the aquatic food web via microorganisms (bacteria and fungi) directly associated with t-POML and via benthic macroinvertebrates by shredding of t-POML. The latter pathway represents a benthic shortcut which efficiently transfers t-POML to higher trophic levels. KW - bacterial production KW - carbon turnover KW - community respiration KW - leaf litter KW - phospholipid-derived fatty acid KW - PLFA KW - Schulzensee KW - Germany KW - sediments KW - shallow lakes KW - stable isotopes KW - terrestrial subsidies Y1 - 2013 U6 - https://doi.org/10.1890/13-0420.1 SN - 0012-9658 SN - 1939-9170 VL - 94 IS - 12 SP - 2754 EP - 2766 PB - Wiley CY - Washington ER - TY - JOUR A1 - Dziallas, Claudia A1 - Grossart, Hans-Peter A1 - Tang, Kam W. A1 - Nielsen, Torkel Gissel T1 - Distinct Communities of Free-Living and Copepod-Associated Microorganisms along a Salinity Gradient in Godthabsfjord, West Greenland JF - ARCTIC ANTARCTIC AND ALPINE RESEARCH N2 - Microorganisms such as Bacteria and Archaea play important roles in the Arctic food web and biogeochemical cycles. Nevertheless, knowledge of microbial community composition in Greenland waters is scarce, and information on microorganisms associated with Arctic zooplankton species is virtually non-existent. We compared free-living microbial communities with those associated with two key copepod species (Calanus finmarchicus and Metridia longa) along a salinity gradient from the deep waters beyond Fyllas Banke to the inner part of Godthabsfjord, West Greenland, in summer 2008. Using genetic fingerprinting we found that free-living Bacteria (in particular Alphaproteobacteria) and Archaea varied with environmental factors and formed different communities along the fjord. Microbial communities associated with the two copepod species were clearly different from those in the ambient water. Surprisingly, Archaea could not be detected on the copepods. Our results show that zooplankton form "microbial islands" in the Arctic pelagic realm with a distinctive community composition and presumably functionality different from the free-living Bacteria. Changes in intensity and timing of meltwater runoff due to global warming are expected to affect these microbial assemblages differently, with potentially significant ramifications for Arctic food webs and biogeochemistry. Y1 - 2013 U6 - https://doi.org/10.1657/1938-4246.45.4.471 SN - 1523-0430 SN - 1938-4246 VL - 45 IS - 4 SP - 471 EP - 480 PB - INST ARCTIC ALPINE RES CY - BOULDER ER - TY - JOUR A1 - Bertilsson, Stefan A1 - Burgin, Amy A1 - Carey, Cayelan C. A1 - Fey, Samuel B. A1 - Grossart, Hans-Peter A1 - Grubisic, Lorena M. A1 - Jones, Ian D. A1 - Kirillin, Georgiy A1 - Lennon, Jay T. A1 - Shade, Ashley A1 - Smyth, Robyn L. T1 - The under-ice microbiome of seasonally frozen lakes JF - Limnology and oceanography N2 - Compared to the well-studied open water of the "growing" season, under-ice conditions in lakes are characterized by low and rather constant temperature, slow water movements, limited light availability, and reduced exchange with the surrounding landscape. These conditions interact with ice-cover duration to shape microbial processes in temperate lakes and ultimately influence the phenology of community and ecosystem processes. We review the current knowledge on microorganisms in seasonally frozen lakes. Specifically, we highlight how under-ice conditions alter lake physics and the ways that this can affect the distribution and metabolism of auto-and heterotrophic microorganisms. We identify functional traits that we hypothesize are important for understanding under-ice dynamics and discuss how these traits influence species interactions. As ice coverage duration has already been seen to reduce as air temperatures have warmed, the dynamics of the under-ice microbiome are important for understanding and predicting the dynamics and functioning of seasonally frozen lakes in the near future. Y1 - 2013 U6 - https://doi.org/10.4319/lo.2013.58.6.1998 SN - 0024-3590 SN - 1939-5590 VL - 58 IS - 6 SP - 1998 EP - 2012 PB - Wiley CY - Waco ER - TY - JOUR A1 - Gläser, Stefanie P. A1 - Bolte, Kathrin A1 - Martin, Karin A1 - Busse, Hans-Jürgen A1 - Grossart, Hans-Peter A1 - Kämpfer, Peter A1 - Gläser, Jens T1 - Novosphingobium fuchskuhlense sp nov., isolated from the north-east basin of Lake Grosse Fuchskuhle JF - International journal of systematic and evolutionary microbiology N2 - A yellow pigmented, Gram-negative, rod-shaped bacterium designated FNE08-7(T) was isolated from subsurface water of the north-east basin of the bog lake Grosse Fuchskuhle (Brandenburg, Germany). A first analysis of the nearly full-length 16S rRNA gene sequence analysis including environmental 16S rRNA gene sequences derived from freshwater ecosystems showed that strain FNE08-7(T) is the first cultured representative, to our knowledge, of the freshwater tribe Novo-A2. Further analysis indicates highest 16S rRNA gene sequence similarities to the type strains of Novosphingobium stygium (98.0%) and Novosphingobium taihuense (97.4%) and between 94.0% and 96.9% sequence similarity to other members of the genus Novosphingobium. Reconstruction of phylogenetic trees showed that strain FNE08-7(T) formed a distinct cluster with the type strains of N. stygium and N. taihuense supported by high bootstrap values. DNA DNA hybridization of strain FNE08-7(T) with N. stygium SMCC B0712(T) and N. taihuense DSM 17507(T) revealed low similarity values of 18.4% (reciprocal: 11.4%) and 23.1% (reciprocal: 54.2%), respectively. The predominant fatty acid of the isolate is C-18:1 omega 7c (56.4%) and two characteristic 2-hydroxy fatty acids, C-14:0 2-OH (16.5%) and C-15:0 2-OH (3.3%) occur. Ubiquinone Q-10 is the major respiratory quinone. The predominant polar lipids are phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, sphingoglycolipid, phosphatidylcholine and minor amounts of diphosphatidylglycerol. Spermidine is the predominant polyamine. Characterization by genotypic, chemotaxonomic and phenotypic analysis indicate that strain FNE08-7(T) represents a novel species of the genus Novosphingobium within the Alphaproteobacteria. Therefore, we propose the species Novosphingobium fuchskuhlense sp. nov., with FNE08-7(T) (=DSM 25065(T)=CCM 7978(T)=CCUG 61508(T)) as the type strain. Y1 - 2013 U6 - https://doi.org/10.1099/ijs.0.043083-0 SN - 1466-5026 VL - 63 SP - 586 EP - 592 PB - Society for General Microbiology CY - Reading ER - TY - JOUR A1 - Kleeberg, Andreas A1 - Hupfer, Michael A1 - Gust, Giselher A1 - Salka, Ivette A1 - Pohlmann, Kirsten A1 - Grossart, Hans-Peter T1 - Intermittent riverine resuspension effects on phosphorus transformations and heterotrophic bacteria JF - Limnology and oceanography N2 - Intermittent riverine resuspension (IRR), a common phenomenon, was applied to investigate its effects on sedimentary resources availability and bacteria in the water column. This lab experiment used organic-rich lowland river sediment in a newly designed erosion chamber, the Benthic Water Column Simulator, generating well-defined ratios of shear velocity u* to turbulence intensity. Eight consecutive resuspension events, 1-8, were initiated at u* = 1.1 cm s(-1). Sedimentary and phosphorus entrainment decreased from 20.4 g m(-2) h(-1) and 111.6 mg m(-2) h(-1) at event 1 to 1.31 g m(-2) h(-1) and 18.7 mg m(-2) h(-1) at event 8, suggesting an exhaustion of particulate and dissolved sediment constituents. Entrainment of particle-associated (PA) bacteria (132.7 x 10(9)-251.1 x 10(9) cells m(-2) h(-1)) was strongly correlated to that of particles. Free-living (FL) bacteria (-27.6 x 10(9)-36.4 x 10(9) cells m(-2) h(-1)) were fractionally entrained. Numbers of PA bacteria remained low after each event, whereas those of FL bacteria strongly increased 5-15 h after an event because of growth due to increased availability of dissolved organic carbon and inorganic nutrients following each event. FL bacteria community structure also changed during IRR. The systematic changes over consecutive IRR cycles show a strong effect in all considered parameters that elude the typical single-event, steady-state experiments. IRR should thus be considered in two respects: experimental protocols on riverine water quality should be revised. In ecosystem modeling, IRR should be considered to better predict extent and effect of resuspension. Only IRR adequately reflects the natural interplay between hydrodynamics and organisms in rivers. Y1 - 2013 U6 - https://doi.org/10.4319/lo.2013.58.2.0635 SN - 0024-3590 SN - 1939-5590 VL - 58 IS - 2 SP - 635 EP - 652 PB - Wiley CY - Waco ER - TY - JOUR A1 - Sengupta, Saswati A1 - Chattopadhyay, Madhab K. A1 - Grossart, Hans-Peter T1 - The multifaceted roles of antibiotics and antibiotic resistance in nature JF - Frontiers in microbiology N2 - Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic-resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic resistance in pathogens. In the natural milieu, antibiotics are often found to be present in sub-inhibitory concentrations acting as signaling molecules supporting the process of quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell, and so on). The evolutionary and ecological aspects of antibiotics and antibiotic resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behavior of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and the genes that confer resistance to antibiotics in nature. KW - antibiotics KW - sub-inhibitory concentration KW - quorum sensing KW - virulence KW - stress response KW - antibiotic resistance KW - antibiotic paradox Y1 - 2013 U6 - https://doi.org/10.3389/fmicb.2013.00047 SN - 1664-302X VL - 4 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Frindte, Katharina A1 - Eckert, Werner A1 - Attermeyer, Katrin A1 - Grossart, Hans-Peter T1 - Internal wave-induced redox shifts affect biogeochemistry and microbial activity in sediments - a simulation experiment JF - Biogeochemistry N2 - Internal waves (seiches) are well-studied physical processes in stratified lakes, but their effects on sediment porewater chemistry and microbiology are still largely unexplored. Due to pycnocline oscillations, sediments are exposed to recurrent changes between epilimnetic and hypolimnetic water. This results in strong differences of environmental conditions, which should be reflected in the responses of redox-sensitive biogeochemical processes at both, the sediment-water interface and deeper sediment layers. We tested in a series of mesocosm experiments the influence of seiche-induced redox changes on porewater chemistry and bacterial activity in the sediments under well controlled conditions. Thereby, we excluded effects of changes in current and temperature regimes. For a period of 10 days, intact sediment cores from oligotrophic Lake Stechlin were incubated under constant (either oxic or anoxic) or alternating redox conditions. Solute concentrations were measured as porewater profiles in the sediment, while microbial activity was determined in the upper 0.5 cm of sediment. Oxic and alternating redox conditions resulted in similar ammonium, phosphate, and methane porewater concentrations, while concentrations of each analyte were considerably higher in anoxic cores. Microbial activity was clearly lower in the anoxic cores than in the oxic and the alternating cores. In conclusion, cores with intermittent anoxic phases of up to 24 hours do not differ in biogeochemistry and microbial activities from static oxic sediments. However, due to various physical processes seiches cause oxygen to penetrate deeper into sediment layers, which affects sediment redox gradients and increase microbial activity in seiche-influenced sediments. KW - Internal waves KW - Sediment KW - Sediment-water interface KW - Core incubation experiments KW - Porewater profiles KW - Redox conditions KW - Microbial activities Y1 - 2013 U6 - https://doi.org/10.1007/s10533-012-9769-1 SN - 0168-2563 VL - 113 IS - 1-3 SP - 423 EP - 434 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Eigemann, Falk A1 - Hilt, Sabine A1 - Salka, Ivette A1 - Grossart, Hans-Peter T1 - Bacterial community composition associated with freshwater algae species specificity vs. dependency on environmental conditions and source community JF - FEMS microbiology ecology N2 - We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteriaalgae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D.armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca.55%), indicating that bacterial precolonization is a strong factor for bacteriaalgae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteriaalgae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. KW - allelopathy KW - bacteriaalgae associations KW - heterotrophic bacteria KW - species-specific Y1 - 2013 U6 - https://doi.org/10.1111/1574-6941.12022 SN - 0168-6496 VL - 83 IS - 3 SP - 650 EP - 663 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Leunert, Franziska A1 - Grossart, Hans-Peter A1 - Gerhardt, Volkmar A1 - Eckert, Werner T1 - Toxicant induced changes on delayed fluorescence decay kinetics of cyanobacteria and green algae a rapid and sensitive biotest JF - PLoS one N2 - Algal tests have developed into routine tools for testing toxicity of pollutants in aquatic environments. Meanwhile, in addition to algal growth rates, an increasing number of fluorescence based methods are used for rapid and sensitive toxicity measures. The present study stresses the suitability of delayed fluorescence (DF) as a promising parameter for biotests. DF is based on the recombination fluorescence at the reaction centre of photosystem II, which is emitted only by photosynthetically active cells. We analyzed the effects of three chemicals (3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 3,5 Dichlorophenol (3,5 DCP) and copper) on the shape of the DF decay kinetics for potential use in phytoplankton toxicity tests. The short incubation tests were done with four phytoplankton species, with special emphasis on the cyanobacterium Microcystis aeruginosa. All species exhibited a high sensitivity to DCMU, but cyanobacteria were more affected by copper and less by 3,5 DCP than the tested green algae. Analyses of changes in the DF decay curve in response to the added chemicals indicated the feasibility of the DF decay approach as a rapid and sensitive testing tool. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0063127 SN - 1932-6203 VL - 8 IS - 4 PB - PLoS CY - San Fransisco ER - TY - INPR A1 - Grossart, Hans-Peter A1 - Riemann, Lasse A1 - Tang, Kam W. T1 - Molecular and functional ecology of aquatic microbial symbionts T2 - Frontiers in microbiology Y1 - 2013 U6 - https://doi.org/10.3389/fmicb.2013.00059 SN - 1664-302X VL - 4 IS - 6125 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Sonnenschein, Eva C. A1 - Syit, Desalegne Abebew A1 - Grossart, Hans-Peter A1 - Ullrich, Matthias S. T1 - Chemotaxis of Marinobacter adhaerens and Its Impact on Attachment to the Diatom Thalassiosira weissflogii JF - Applied and environmental microbiology N2 - Alga-bacterium interactions are crucial for aggregate formation and carbon cycling in aquatic systems. To understand the initiation of these interactions, we investigated bacterial chemotaxis within a bilateral model system. Marinobacter adhaerens HP15 has been demonstrated to attach to the diatom Thalassiosira weissflogii and induce transparent exopolymeric particle and aggregate formation. M. adhaerens possesses one polar flagellum and is highly motile. Bacterial cells were attracted to diatom cells, as demonstrated by addition of diatom cell homogenate or diatom culture supernatant to soft agar, suggesting that chemotaxis might be important for the interaction of M. adhaerens with diatoms. Three distinct chemotaxis-associated gene clusters were identified in the genome sequence of M. adhaerens, with the clusters showing significant sequence similarities to those of Pseudomonas aeruginosa PAO1. Mutations in the genes cheA, cheB, chpA, and chpB, which encode histidine kinases and methylesterases and which are putatively involved in either flagellum-associated chemotaxis or pilus-mediated twitching motility, were generated and mutants with the mutations were phenotypically analyzed. Delta cheA and Delta cheB mutants were found to be swimming deficient, and all four mutants were impaired in biofilm formation on abiotic surfaces. Comparison of the HP15 wild type and its chemotaxis mutants in cocultures with the diatom revealed that the fraction of bacteria attaching to the diatom decreased significantly for mutants in comparison to that for the wild type. Our results highlight the importance of M. adhaerens chemotaxis in initiation of its interaction with the diatom. In-depth knowledge of these basic processes in interspecies interactions is pivotal to obtain a systematic understanding of organic matter flux and nutrient cycling in marine ecosystems. Y1 - 2012 U6 - https://doi.org/10.1128/AEM.01790-12 SN - 0099-2240 VL - 78 IS - 19 SP - 6900 EP - 6907 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Roesel, Stefan A1 - Allgaier, Martin A1 - Grossart, Hans-Peter T1 - Long-Term characterization of free-living and particle-associated bacterial communities in lake Tiefwaren reveals distinct seasonal patterns JF - Microbial ecology N2 - Seasonal changes in environmental conditions have a strong impact on microbial community structure and dynamics in aquatic habitats. To better elucidate the response of bacterial communities to environmental changes, we have measured a large variety of limnetic variables and investigated bacterial community composition (BCC) and dynamics over seven consecutive years between 2003 and 2009 in mesotrophic Lake Tiefwaren (NE Germany). We separated between free-living (FL, > 0.2, < 5.0 mu m) and particle-associated (PA, > 5.0 mu m) bacteria to account for different bacterial lifestyles and to obtain a higher resolution of the microbial diversity. Changes in BCC were studied by DGGE based on PCR-amplified 16S rRNA gene fragments. Sequencing of DGGE bands revealed that ca. 70 % of all FL bacteria belonged to the Actinobacteria, whereas PA bacteria were dominated by Cyanobacteria (43 %). FL communities were generally less diverse and rather stable over time compared to their PA counterpart. Annual changes in reoccurring seasonal patterns of dominant freshwater bacteria were supported by statistical analyses, which revealed several significant correlations between DGGE profiles and various environmental variables, e.g. temperature and nutrients. Overall, FL bacteria were generally less affected by environmental changes than members of the PA fraction. Close association of PA bacteria with phytoplankton and zooplankton suggests a tight coupling of PA bacteria to organisms of higher trophic levels. Our results indicate substantial differences in bacterial lifestyle of pelagic freshwater bacteria, which are reflected by contrasting seasonal dynamics and relationships to a number of environmental variables. Y1 - 2012 U6 - https://doi.org/10.1007/s00248-012-0049-3 SN - 0095-3628 VL - 64 IS - 3 SP - 571 EP - 583 PB - Springer CY - New York ER - TY - JOUR A1 - Wurzbacher, Christian A1 - Salka, Ivette A1 - Grossart, Hans-Peter T1 - Environmental actinorhodopsin expression revealed by a new in situ filtration and fixation sampler JF - Environmental microbiology reports N2 - Freshwater Actinobacteria are an important and dominant group of bacterioplankton in most temperate freshwater systems. Recently, metagenomic studies discovered rhodopsin-like protein-coding sequences present in Actinobacteria which could be a decisive hint for their success in freshwater ecosystems. We analysed the diversity of actinorhodopsin (ActR) in Lake Stechlin (northern Germany) and assessed the actR expression profile during a diurnal cycle. We obtained 85 positive actR clones which could be subsequently grouped to 17 operational taxonomic units assuming a 90% sequence similarity. The phylogenetic analysis points to a close relationship of all obtained sequences to the acI lineage of Actinobacteria, forming six independent clusters. For the first time, we followed in situ transcription of actR in Lake Stechlin revealing a rather constitutive circadian gene expression. For analysing in situ expression patterns of functional genes in aquatic ecosystems, such as actR, we invented a new in situ filtration and fixation sampler (IFFS). The IFFS enables the representative investigation of microbial transcriptomes in any aquatic ecosystem at all water depths. The IFFS sampler is simple and inexpensive, and we provide all engineering plans for an easy rebuild. Consequently, our IFFS is suitable to reliably study expression of any known functional gene of any aquatic microorganism. Y1 - 2012 U6 - https://doi.org/10.1111/j.1758-2229.2012.00350.x SN - 1758-2229 VL - 4 IS - 5 SP - 491 EP - 497 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Dziallas, Claudia A1 - Grossart, Hans-Peter T1 - Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature JF - Marine biology : international journal on life in oceans and coastal waters N2 - Associated heterotrophic bacteria alter the microenvironment of cyanobacteria and potentially influence cyanobacterial development. Therefore, we studied interactions of the unicellular freshwater cyanobacterium Microcystis aeruginosa with heterotrophic bacteria. The associated bacterial community was greatly driven by temperature as seen by DNA fingerprinting. However, the associated microbes also closely interacted with the cyanobacteria indicating changing ecological consequence of the associated bacterial community with temperature. Whereas concentration of dissolved organic carbon in cyanobacterial cultures changed in a temperature-dependent manner, its quality greatly varied under the same environmental conditions, but with different associated bacterial communities. Furthermore, temperature affected quantity and quality of cell-bound microcystins, whereby interactions between M. aeruginosa and their associated community often masked this temperature effect. Both macro- and microenvironment of active cyanobacterial strains were characterized by high pH and oxygen values creating a unique habitat that potentially affects microbial diversity and function. For example, archaea including 'anaerobic' methanogens contributed to the associated microbial community. This implies so far uncharacterized interactions between Microcystis aeruginosa and its associated prokaryotic community, which has unknown ecological consequences in a climatically changing world. Y1 - 2012 U6 - https://doi.org/10.1007/s00227-012-1927-4 SN - 0025-3162 VL - 159 IS - 11 SP - 2389 EP - 2398 PB - Springer CY - New York ER - TY - JOUR A1 - Kirillin, Georgiy A1 - Grossart, Hans-Peter A1 - Tang, Kam W. T1 - Modeling sinking rate of zooplankton carcasses effects of stratification and mixing JF - Limnology and oceanography N2 - Using the carcass sinking rate and density determined in laboratory for several freshwater zooplankton species, we developed a model of zooplankton carcass sinking as affected by turbulence and stratification. The model was subsequently used to estimate the residence time of zooplankton carcasses in the water column of Lake Stechlin, a typical temperate dimictic lake in northeastern Germany. The residence time varied among the different species and was strongly affected by thermal stratification. At the peak of summer stratification, the carcasses stayed up to 5 d in the 70 m-deep water column before reaching the lake bottom. Residence time was long enough that zooplankton carcasses could serve as an important matter and energy source for bacteria in the lake's pelagic zone and hence have the potential to significantly affect aquatic carbon and nutrient cycling. The proposed model of sinking rates, based on physically sound relationships, can be easily applied to other passively sinking particles, and be integrated into large ecosystem models. Y1 - 2012 U6 - https://doi.org/10.4319/lo.2012.57.3.0881 SN - 0024-3590 VL - 57 IS - 3 SP - 881 EP - 894 PB - Wiley CY - Waco ER - TY - JOUR A1 - Attermeyer, Katrin A1 - Tittel, Joerg A1 - Allgaier, Martin A1 - Frindte, Katharina A1 - Wurzbacher, Christian A1 - Hilt, Sabine A1 - Kamjunke, Norbert A1 - Grossart, Hans-Peter T1 - Effects of Light and Autochthonous Carbon Additions on Microbial Turnover of Allochthonous Organic Carbon and Community Composition JF - Microbial ecology N2 - The fate of allochthonous dissolved organic carbon (DOC) in aquatic systems is primarily controlled by the turnover of heterotrophic bacteria. However, the roles that abiotic and biotic factors such as light and DOC release by aquatic primary producers play in the microbial decomposition of allochthonous DOC is not well understood. We therefore tested if light and autochthonous DOC additions would increase allochthonous DOC decomposition rates and change bacterial growth efficiencies and community composition (BCC). We established continuous growth cultures with different inocula of natural bacterial communities and alder leaf leachates (DOCleaf) with and without light exposure before amendment. Furthermore, we incubated DOCleaf together with autochthonous DOC from lysed phytoplankton cultures (DOCphyto). Our results revealed that pretreatments of DOCleaf with light resulted in a doubling of bacterial growth efficiency (BGE), whereas additions of DOCphyto or combined additions of DOCphyto and light had no effect on BGE. The change in BGE was not accompanied by shifts in the phylogenetic structure of the BCC, but BCC was influenced by the DOC source. Our results highlight that a doubling of BGE is not necessarily accompanied by a shift in BCC and that BCC is more strongly affected by resource properties. KW - Bacterial growth efficiency KW - Continuous cultures KW - Carbon decomposition KW - Leaf litter KW - Photolysis Y1 - 2015 U6 - https://doi.org/10.1007/s00248-014-0549-4 SN - 0095-3628 SN - 1432-184X VL - 69 IS - 2 SP - 361 EP - 371 PB - Springer CY - New York ER - TY - JOUR A1 - Corno, Gianluca A1 - Salka, Ivette A1 - Pohlmann, Kirsten A1 - Hall, Alex R. A1 - Grossart, Hans-Peter T1 - Interspecific interactions drive chitin and cellulose degradation by aquatic microorganisms JF - Aquatic microbial ecology : international journal N2 - Complex biopolymers (BPs) such as chitin and cellulose provide the majority of organic carbon in aquatic ecosystems, but the mechanisms by which communities of bacteria in natural systems exploit them are unclear. Previous degradation experiments in artificial systems predominantly used microcosms containing a single bacterial species, neglecting effects of interspecific interactions. By constructing simplified aquatic microbial communities, we tested how the addition of other bacterial species, of a nanoflagellate protist capable of consuming bacteria, or of both, affect utilization of BPs. Surprisingly, total abundance of resident bacteria in mixed communities increased upon addition of the protist. Concomitantly, bacteria shifted from free-living to aggregated morphotypes that seemed to promote utilization of BPs. In our model system, these interactions significantly increased productivity in terms of overall bacterial numbers and carbon transfer efficiency. This indicates that interactions on microbial aggregates may be crucial for chitin and cellulose degradation. We therefore suggest that interspecific microbial interactions must be considered when attempting to model the turnover of the vast pool of complex biopolymers in aquatic ecosystems. KW - Aggregation KW - Flagellate grazing KW - Ecological interactions KW - Microbial carbon transfer KW - Polymer degradation KW - System ecology Y1 - 2015 U6 - https://doi.org/10.3354/ame01765 SN - 0948-3055 SN - 1616-1564 VL - 76 IS - 1 SP - 27 EP - + PB - Institute of Mathematical Statistics CY - Oldendorf Luhe ER -