TY - JOUR A1 - Vogel, Heike A1 - Kamitz, Anne A1 - Hallahan, Nicole A1 - Lebek, Sandra A1 - Schallschmidt, Tanja A1 - Jonas, Wenke A1 - Jähnert, Markus A1 - Gottmann, Pascal A1 - Zellner, Lisa A1 - Kanzleiter, Timo A1 - Damen, Mareike A1 - Altenhofen, Delsi A1 - Burkhardt, Ralph A1 - Renner, Simone A1 - Dahlhoff, Maik A1 - Wolf, Eckhard A1 - Müller, Timo Dirk A1 - Blüher, Matthias A1 - Joost, Hans-Georg A1 - Chadt, Alexandra A1 - Al-Hasani, Hadi A1 - Schürmann, Annette T1 - A collective diabetes cross in combination with a computational framework to dissect the genetics of human obesity and Type 2 diabetes JF - Human molecular genetics N2 - To explore the genetic determinants of obesity and Type 2 diabetes (T2D), the German Center for Diabetes Research (DZD) conducted crossbreedings of the obese and diabetes-prone New Zealand Obese mouse strain with four different lean strains (B6, DBA, C3H, 129P2) that vary in their susceptibility to develop T2D. Genome-wide linkage analyses localized more than 290 quantitative trait loci (QTL) for obesity, 190 QTL for diabetes-related traits and 100 QTL for plasma metabolites in the out-cross populations. A computational framework was developed that allowed to refine critical regions and to nominate a small number of candidate genes by integrating reciprocal haplotype mapping and transcriptome data. The efficiency of the complex procedure was demonstrated for one obesity QTL. The genomic interval of 35 Mb with 502 annotated candidate genes was narrowed down to six candidates. Accordingly, congenic mice retained the obesity phenotype owing to an interval that contains three of the six candidate genes. Among these the phospholipase PLA2G4A exhibited an elevated expression in adipose tissue of obese human subjects and is therefore a critical regulator of the obesity locus. Together, our broad and complex approach demonstrates that combined- and comparative-cross analysis exhibits improved mapping resolution and represents a valid tool for the identification of disease genes. Y1 - 2018 U6 - https://doi.org/10.1093/hmg/ddy217 SN - 0964-6906 SN - 1460-2083 VL - 27 IS - 17 SP - 3099 EP - 3112 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hesse, Deike A1 - Jaschke, Alexander A1 - Kanzleiter, Timo A1 - Witte, Nicole A1 - Augustin, Robert A1 - Hommel, Angela A1 - Püschel, Gerhard Paul A1 - Petzke, Klaus-Jürgen A1 - Joost, Hans-Georg A1 - Schupp, Michael A1 - Schürmann, Annette T1 - GTPase ARFRP1 is essential for normal hepatic glycogen storage and insulin-like growth factor 1 secretion JF - Molecular and cellular biology N2 - The GTPase ADP-ribosylation factor-related protein 1 (ARFRP1) is located at the trans-Golgi compartment and regulates the recruitment of Arf-like 1 (ARL1) and its effector golgin-245 to this compartment. Here, we show that liver-specific knockout of Arfrp1 in the mouse (Arfrp1(liv-/-)) resulted in early growth retardation, which was associated with reduced hepatic insulin-like growth factor 1 (IGF1) secretion. Accordingly, suppression of Arfrp1 in primary hepatocytes resulted in a significant reduction of IGF1 release. However, the hepatic secretion of IGF-binding protein 2 (IGFBP2) was not affected in the absence of ARFRP1. In addition, Arfrp1(liv-/-) mice exhibited decreased glucose transport into the liver, leading to a 50% reduction of glycogen stores as well as a marked retardation of glycogen storage after fasting and refeeding. These abnormalities in glucose metabolism were attributable to reduced protein levels and intracellular retention of the glucose transporter GLUT2 in Arfrp1(liv-/-) livers. As a consequence of impaired glucose uptake into the liver, the expression levels of carbohydrate response element binding protein (ChREBP), a transcription factor regulated by glucose concentration, and its target genes (glucokinase and pyruvate kinase) were markedly reduced. Our data indicate that ARFRP1 in the liver is involved in the regulation of IGF1 secretion and GLUT2 sorting and is thereby essential for normal growth and glycogen storage. Y1 - 2012 U6 - https://doi.org/10.1128/MCB.00522-12 SN - 0270-7306 VL - 32 IS - 21 SP - 4363 EP - 4374 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Aga-Barfknecht, Heja A1 - Hallahan, Nicole A1 - Gottmann, Pascal A1 - Jähnert, Markus A1 - Osburg, Sophie A1 - Schulze, Gunnar A1 - Kamitz, Anne A1 - Arends, Danny A1 - Brockmann, Gudrun A1 - Schallschmidt, Tanja A1 - Lebek, Sandra A1 - Chadt, Alexandra A1 - Al-Hasani, Hadi A1 - Joost, Hans-Georg A1 - Schürmann, Annette A1 - Vogel, Heike T1 - Identification of novel potential type 2 diabetes genes mediating beta-cell loss and hyperglycemia using positional cloning JF - Frontiers in genetics N2 - Type 2 diabetes (T2D) is a complex metabolic disease regulated by an interaction of genetic predisposition and environmental factors. To understand the genetic contribution in the development of diabetes, mice varying in their disease susceptibility were crossed with the obese and diabetes-prone New Zealand obese (NZO) mouse. Subsequent whole-genome sequence scans revealed one major quantitative trait loci (QTL),Nidd/DBAon chromosome 4, linked to elevated blood glucose and reduced plasma insulin and low levels of pancreatic insulin. Phenotypical characterization of congenic mice carrying 13.6 Mbp of the critical fragment of DBA mice displayed severe hyperglycemia and impaired glucose clearance at week 10, decreased glucose response in week 13, and loss of beta-cells and pancreatic insulin in week 16. To identify the responsible gene variant(s), further congenic mice were generated and phenotyped, which resulted in a fragment of 3.3 Mbp that was sufficient to induce hyperglycemia. By combining transcriptome analysis and haplotype mapping, the number of putative responsible variant(s) was narrowed from initial 284 to 18 genes, including gene models and non-coding RNAs. Consideration of haplotype blocks reduced the number of candidate genes to four (Kti12,Osbpl9,Ttc39a, andCalr4) as potential T2D candidates as they display a differential expression in pancreatic islets and/or sequence variation. In conclusion, the integration of comparative analysis of multiple inbred populations such as haplotype mapping, transcriptomics, and sequence data substantially improved the mapping resolution of the diabetes QTLNidd/DBA. Future studies are necessary to understand the exact role of the different candidates in beta-cell function and their contribution in maintaining glycemic control. KW - type 2 diabetes KW - beta-cell loss KW - insulin KW - positional cloning KW - transcriptomics KW - haplotype Y1 - 2020 U6 - https://doi.org/10.3389/fgene.2020.567191 SN - 1664-8021 VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Willmann, Caroline A1 - Heni, Martin A1 - Linder, Katarzyna A1 - Wagner, Robert A1 - Stefan, Norbert A1 - Machann, Jürgen A1 - Schulze, Matthias Bernd A1 - Joost, Hans-Georg A1 - Haring, Hans-Ulrich A1 - Fritsche, Andreas T1 - Potential effects of reduced red meat compared with increased fiber intake on glucose metabolism and liver fat content BT - a randomized and controlled dietary intervention study JF - The American journal of clinical nutrition : a publication of the American Society for Nutrition, Inc. N2 - Background: Epidemiological studies suggest that an increased red meat intake is associated with a higher risk of type 2 diabetes, whereas an increased fiber intake is associated with a lower risk. Objectives: We conducted an intervention study to investigate the effects of these nutritional factors on glucose and lipid metabolism, body-fat distribution, and liver fat content in subjects at increased risk of type 2 diabetes. Methods: This prospective, randomized, and controlled dietary intervention study was performed over 6 mo. All groups decreased their daily caloric intake by 400 kcal. The "control" group (N = 40) only had this requirement. The "no red meat" group (N = 48) in addition aimed to avoid the intake of red meat, and the "fiber" group (N = 44) increased intake of fibers to 40 g/d. Anthropometric parameters and frequently sampled oral glucose tolerance tests were performed before and after intervention. Body-fat mass and distribution, liver fat, and liver iron content were assessed by MRI and single voxel proton magnetic resonance spectroscopy. Results: Participants in all groups lost weight (mean 3.3 +/- 0.5 kg, P < 0.0001). Glucose tolerance and insulin sensitivity improved (P < 0.001), and body and visceral fat mass decreased in all groups (P < 0.001). These changes did not differ between groups. Liver fat content decreased significantly (P < 0.001) with no differences between the groups. The decrease in liver fat correlated with the decrease in ferritin during intervention (r(2) = 0.08, P = 0.0021). This association was confirmed in an independent lifestyle intervention study (Tuebingen Lifestyle Intervention Program, N = 229, P = 0.0084). Conclusions: Our data indicate that caloric restriction leads to a marked improvement in glucose metabolism and body-fat composition, including liver-fat content. The marked reduction in liver fat might be mediated via changes in ferritin levels. In the context of caloric restriction, there seems to be no additional beneficial impact of reduced red meat intake and increased fiber intake on the improvement in cardiometabolic risk parameters. This trial was registered at clinicaltrials.gov as NCT03231839. KW - type 2 diabetes KW - prevention KW - randomized controlled intervention study KW - nutritional factors KW - fiber KW - red meat Y1 - 2019 U6 - https://doi.org/10.1093/ajcn/nqy307 SN - 0002-9165 SN - 1938-3207 VL - 109 IS - 2 SP - 288 EP - 296 PB - Oxford Univ. Press CY - Oxford ER -