TY - GEN A1 - Dolezalova, Barbora A1 - Kubatova, Brankica A1 - Kubat, Jiri A1 - Hamann, Wolf-Rainer T1 - The Quasi-WR Star HD 45166 Revisited T2 - Radiative signatures from the cosmos N2 - We studied the wind of the quasi Wolf-Rayet (qWR) star HD 45166. As a first step we modeled the observed UV spectra of this star by means of the state-of-the-art Potsdam Wolf-Rayet (PoWR) atmosphere code. We inferred the wind parameters and compared them with previous findings. Y1 - 2019 SN - 978-1-58381-925-8 SN - 1050-3390 VL - 519 SP - 197 EP - 200 PB - Astronomical soc pacific CY - San Fransisco ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Graefener, G. A1 - Liermann, A. T1 - The galactic WN stars - Spectral analyses with line-blanketed model atmospheres versus stellar evolution models with and without rotation JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Very massive stars pass through the Wolf-Rayet (WR) stage before they finally explode. Details of their evolution have not yet been safely established, and their physics are not well understood. Their spectral analysis requires adequate model atmospheres, which have been developed step by step during the past decades and account in their recent version for line blanketing by the millions of lines from iron and iron-group elements. However, only very few WN stars have been re-analyzed by means of line-blanketed models yet. Aims. The quantitative spectral analysis of a large sample of Galactic WN stars with the most advanced generation of model atmospheres should provide an empirical basis for various studies about the origin, evolution, and physics of the Wolf-Rayet stars and their powerful winds. Methods. We analyze a large sample of Galactic WN stars by means of the Potsdam Wolf-Rayet (PoWR) model atmospheres, which account for iron line blanketing and clumping. The results are compared with a synthetic population, generated from the Geneva tracks for massive star evolution. Results. We obtain a homogeneous set of stellar and atmospheric parameters for the GalacticWN stars, partly revising earlier results. Conclusions. Comparing the results of our spectral analyses of the Galactic WN stars with the predictions of the Geneva evolutionary calculations, we conclude that there is rough qualitative agreement. However, the quantitative discrepancies are still severe, and there is no preference for the tracks that account for the effects of rotation. It seems that the evolution of massive stars is still not satisfactorily understood. KW - stars : mass-loss KW - stars : winds, outflows KW - stars : Wolf-Rayet KW - stars : atmospheres KW - stars : early-type KW - stars : evolution Y1 - 2006 U6 - https://doi.org/10.1051/0004-6361:20065052 SN - 0004-6361 VL - 457 IS - 3 SP - 1015 EP - 1031 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gräfener, Götz A1 - Hamann, Wolf-Rainer T1 - Hydrodynamic model atmospheres for WR stars : self-consistent modeling of a WC star wind N2 - We present the first non-LTE atmosphere models for WRstars that incorporate a self-consistent solution of the hydrodynamic equations. The models take iron-group line-blanketing and clumping into account, and compute the hydrodynamic structure of a radiatively driven wind consistently with the non-LTE radiation transport in the co-moving frame. We construct a self-consistent wind model that reproduces all observed properties of an early-type WCstar (WC5). We find that the WR-type mass-loss is initiated at high optical depth by the so-called "Hot Iron Bump" opacities (Fe IX- XVI). The acceleration of the outer wind regions is due to iron-group ions of lower excitation in combination with C and O. Consequently, the wind structure shows two acceleration regions, one close to the hydrostatic wind base in the optically thick part of the atmosphere, and another farther out in the wind. In addition to the radiative acceleration, the "Iron Bump" opacities are responsible for an intense heating of deep atmospheric layers. We find that the observed narrow O VI emission lines in the optical spectra of WC stars originate from this region. From their dependence on the clumping factor we gain important information about the location where the density inhomogeneities in WR-winds start to develop Y1 - 2005 SN - 0004-6361 ER - TY - JOUR A1 - Evans, C. J. A1 - Smartt, S. J. A1 - Lee, J. K. A1 - Lennon, D. J. A1 - Kaufer, A. A1 - Dufton, P. L. A1 - Trundle, C. A1 - Herrero, A. A1 - Simon Díaz, Sergio A1 - de Koter, A. A1 - Hamann, Wolf-Rainer A1 - Hendry, M. A. A1 - Hunter, I. A1 - Irwin, M. J. A1 - Korn, A. J. A1 - Kudritzki, R. P. A1 - Langer, Norbert A1 - Mokiem, M. R. A1 - Najarro, F. A1 - Pauldrach, A. W. A. A1 - Przybilla, Norbert A1 - Puls, J. A1 - Ryans, R. S. I. A1 - Urbaneja, M. A. A1 - Venn, K. A. A1 - Villamariz, M. R. T1 - The VLT-FLAMES survey of massive stars : Observations in the Galactic clusters NGC3293, NGC4755 and NGC6611 N2 - We introduce a new survey of massive stars in the Galaxy and the Magellanic Clouds using the Fibre Large Array Multi- Element Spectrograph ( FLAMES) instrument at the Very Large Telescope ( VLT). Here we present observations of 269 Galactic stars with the FLAMES- Giraffe Spectrograph ( R similar or equal to 25 000), in fields centered on the open clusters NGC3293, NGC4755 and NGC6611. These data are supplemented by a further 50 targets observed with the Fibre- Fed Extended Range Optical Spectrograph ( FEROS, R = 48 000). Following a description of our scientific motivations and target selection criteria, the data reduction methods are described; of critical importance the FLAMES reduction pipeline is found to yield spectra that are in excellent agreement with less automated methods. Spectral classifications and radial velocity measurements are presented for each star, with particular attention paid to morphological peculiarities and evidence of binarity. These observations represent a significant increase in the known spectral content of NGC3293 and NGC4755, and will serve as standards against which our subsequent FLAMES observations in the Magellanic Clouds will be compared Y1 - 2005 ER - TY - JOUR A1 - Pena, M A1 - Peimbert, A. A1 - Hamann, Wolf-Rainer A1 - Ruiz, M. T. A1 - Peimbert, M. T1 - The extraordinary planetary nebula N66 in the LMC N2 - Morphology of the planetary nebula LMC-N66 (ionized by a [WN] star) indicates that the nebula is a multipolar object with a very narrow waist. It shows several jets, knots and filaments in opposite directions from the central star. A couple of twisted long filaments could be interpreted as due to point-symmetric type ejection. If such is the case, the progenitor would be a binary precessing system. High resolution spectroscopy shows that most of the material is approaching or receding from the star. However the line profiles are very complex, showing several components at different velocities. Our high resolution spectroscopic data show that the different structures (knots, filaments, ...) present different radial velocities spreading from 240 to more than 400 km/s. The system velocity is 300 km/s. There are high velocity knots located to the north of the central star, moving at more than 100 km/s relative to the system velocity. Y1 - 2004 SN - 3-12-283174-0 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - Grids of model spectra for WN stars, ready for use N2 - Grids of model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN subclass) are presented. The calculations account for the expansion of the atmosphere, non-LTE, clumping, and line blanketing from iron-group elements. Observed spectra of single Galactic WN stars can in general be reproduced consistently by this generation of models. The parameters of the presented model grids cover the whole relevant range of stellar temperatures and mass-loss rates. We point out that there is a degeneracy of parameters for very thick winds; their spectra tend to depend only on the ratio $L/{dot M}^{4/3}$. Abundances of the calculated grids are for Galactic WN stars without hydrogen and with 20% hydrogen (by mass), respectively. Model spectra and fluxes are available via internet (http://www.astro.physik.uni- potsdam.de/PoWR.html). Y1 - 2004 SN - 0004-6361 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - A temperature correction method for expanding atmospheres Y1 - 2004 ER - TY - JOUR A1 - Stastinska, G. A1 - Gräfener, Götz A1 - Pena, M. A1 - Hamann, Wolf-Rainer A1 - Koesterke, Lars A1 - Szczerba, Ryszard T1 - Comprehensive modelling of the planetary nebula LMC-SMP 61 and its [WC]-type central star N2 - We present a comprehensive study of the Magellanic Cloud planetary nebula SMP 61 and of its nucleus, a Wolf- Rayet type star classified [WC 5-6]. The observational material consists of HST STIS spectroscopy and imaging, together with optical and UV spectroscopic data collected from the literature and infrared fluxes measured by IRAS. We have performed a detailed spectral analysis of the central star, using the Potsdam code for expanding atmospheres in non-LTE. For the central star we determine the following parameters: L-star = 10(3.96) L-., R-star = 0.42 R-., T-star = 87.5 kK, (M) over dot = 10(-6.12) M-. yr(-1), v(infinity) = 1400 km s(-1), and a clumping factor of D = 4. The elemental abundances by mass are X-He = 0.45, X-C = 0.52, X-N < 5 x 10(-5), X-O = 0.03, and X-Fe < 1 x 10(-4). The fluxes from the model stellar atmosphere were used to compute photoionization models of the nebula. All the available observations, within their error bars, were used to constrain these models. We find that the ionizing fluxes predicted by the stellar model are consistent with the fluxes needed by the photoionization model to reproduce the nebular emission, within the error margins. However, there are indications that the stellar model overestimates the number and hardness of Lyman continuum photons. The photoionization models imply a clumped density structure of the nebular material. The observed C III] lambda1909/C II lambda4267 line ratio implies the existence of carbon-rich clumps in the nebula. Such clumps are likely produced by stellar wind ejecta, possibly mixed with the nebular material. We discuss our results with regard to the stellar and nebular post-AGB evolution. The observed Fe-deficiency for the central star indicates that the material which is now visible on the stellar surface has been exposed to s-process nucleosynthesis during previous thermal pulses. The absence of nitrogen allows us to set an upper limit to the remaining H-envelope mass after a possible AGB final thermal pulse. Finally, we infer from the total amount of carbon detected in the nebula that the strong [WC] mass- loss may have been active only for a limited period during the post-AGB evolution Y1 - 2004 SN - 0004-6361 ER - TY - JOUR A1 - Pena, M. A1 - Hamann, Wolf-Rainer A1 - Ruiz, M. T. A1 - Peimbert, A. A1 - Peimbert, M. T1 - A high resolution spectroscopic study of the extraordinary planetary nebula LMC-N66 N2 - The planetary nebula N66 in the Large Magellanic Cloud is an extraordinary object, as it is the only confirmed PN where the central star is a Wolf-Rayet star of the nitrogen sequence, i.e. of type [WN]. Moreover, the star showed a dramatic brightness outburst in 1993-1994. In a previous paper (Hamann et al. 2003) we analyzed the changing stellar spectra and found evidence that the central star is most likely a binary system where a white dwarf presently accretes matter from a non-degenerate companion at a high rate. Thus the object is a candidate for a future type Ia supernova in our cosmic neighborhood. In the present paper we analyze the morphology and kinematics of the nebula, using images and high-resolution spectra obtained with the Hubble Space Telescope (HST) and the Very Large Telescope (ESO-VLT). The object presents a complex multipolar structure, dominated by very bright lobes located at both sides of the central star and separated by a narrow waist. In addition there is a pair of very extended and twisted loops, also pointing in opposite directions; their symmetry axis and collimation angle differs from those of the bright lobes. High resolution spectroscopy reveals two main velocity components, "approaching" material at an average heliocentric radial velocity Of V-rad = 248 30 km s(-1) and similarly bright "receding" material at V-rad = 331 +/- 25 km s(-1). A systemic velocity of about 300 km s(-1) is derived. Opposite lobes and loops possess opposite velocities. Furthermore there are knots and filaments of complex structure and kinematics. Close to the central star, nebular gas is found, receding at very high velocity (125 km s(-1) relative to the system). The morphology and kinematics of LMC-N66 can be explained as the result of episodic bipolar ejections with changing axis. The bipolar structures could have been produced by collimated streams ejected from a precessing central source. We suggest that the precession could have been produced by an external torque, possibly due to a binary companion. Young, fast-moving nebular knots close to the star appear slightly He- and N-richer than the main body of the nebula, but are still hydrogen-rich in contrast to the helium-dominated atmosphere of the [WN]- type central star. In the binary scenario, this nebular matter must have been accreted from the non-degenerate companion and re-ejected before it was fully burnt Y1 - 2004 ER - TY - JOUR A1 - Hamann, Wolf-Rainer T1 - Basic ali in moving atmospheres N2 - The non-LTE radiative transfer problem requires the consistent solution of two sets of equations: the radiative transfer equations, which couple the spatial points, and the equations of the statistical equilibrium, which couple the frequencies. The "Accelerated Lambda Iteration" (ALI) method allows for an iterative scheme, in which both sets of equations are solved in turn. For moving atmospheres the radiative transfer is preferably formulated in the co-moving frame-of-reference, which leads to a partial differential equation. "Classical" numerical solution methods are based on differencing schemes. For better numerical stability, we prefer "short characteristics" integration methods. Iron line blanketing is accounted for by means of the "superlevel" concept. In contrast to static atmospheres, the frequencies can not be re-ordered in the moving case because of the frequency coupling from Doppler shifts. One of our future aims is the coupling of elaborated radiative transfer calculations with the hydrodynamical equations in order to understand the driving of strong stellar winds, especially from Wolf-Rayet stars. Y1 - 2003 SN - 1-5838-1131-1 ER - TY - JOUR A1 - Gräfener, Götz A1 - Hamann, Wolf-Rainer T1 - Hydrodynamic model atmospheres for hot stars N2 - Recent non-LTE models for expanding atmospheres, accounting for iron group line-blanketing and clumping, show a radiative acceleration which supplies a large part of the driving force of WR winds. Aiming at the calculation of fully consistent wind models, we developed a method to include the solution of the hydrodynamic equations into our code, taking into account the radiation pressure from the comoving-frame radiation transport. In the present work we discuss the resulting wind acceleration for WR- and O star models, and demonstrate the effects of clumping. In addition, we present a consistent hydrodynamic non-LTE model for the O-star zeta Puppis, which is calculated under consideration of complex model atoms of H, He, C, N, O, Si and the iron group elements. In its present state this model fails to reproduce the observed mass loss rate - probably due to still incomplete atomic data. Y1 - 2003 SN - 1-58381-133-8 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - The surface composition of hydrogen-deficient Post-AGB stars N2 - Most Central Stars of Planetary Nebulae exhibit a spectrum of a hydrogen-rich hot star with little or no stellar wind. About 20 % of the CSPN, however, show entirely different spectra dominated by bright and broad emission lines of carbon, oxygen and helium, resembling the so-called Wolf-Rayet (WR) spectral class originally established for massive, Pop. I stars. These spectra indicate a hydrogen-deficient surface composition and, at the same time, strong mass-loss. As the WR spectra are formed entirely in a dense stellar wind, their spectral analysis requires adequate modelling. Corresponding Non-LTE model atmospheres have been developed in the last decade and became more and more sophisticated. They have been applied yet for analyzing almost all available WR-type CSPN spectra, establishing the stellar parameters. The obtained surface abundances are not understandable in terms of "classical" evolutionary calculations, but agree in principle with the advanced models for AGB evolution which account consistently for diffusive mixing and nuclear burning. The underabundance of iron, which we established in a recent study of a WC-type central star (LMC-SMP 61), gives indirect evidence that neutron-capture synthesis has converted Fe into s-process elements. Y1 - 2003 ER - TY - JOUR A1 - Gräfener, Götz A1 - Koesterke, Lars A1 - Hamann, Wolf-Rainer T1 - The WR population in CTS 1026 N2 - The blue compact H II galaxy CTS 1026 shows very strong WR emission features around 4686 AA and 5800 AA. We present high S/N optical spectra of the nucleus of this object. Byanalysis of the WR profile shapes, we determine the dominant spectral types and the WN/WC ratio in the starforming region. The ratio WR/O is determined via standard nebular diagnostics. Y1 - 2003 SN - 1-58381-133-8 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz A1 - Koesterke, Lars T1 - Wolf-Rayet star parameters from spectral analyses N2 - The Potsdam Non-LTE code for expanding atmospheres, which accounts for clumping and iron-line blanketing, has been used to establish a grid of model atmospheres for WC stars. A parameter degeneracy is discovered for early-type WC models which do not depend on the "stellar temperature". 15 galactic WC4-7 stars are analyzed, showing a very uniform carbon abundance (He:C=55:40) with only few exceptions. Y1 - 2003 SN - 1-58381-133-8 ER - TY - JOUR A1 - Pena, M. A1 - Hamann, Wolf-Rainer A1 - Ruiz, M. T. T1 - The LMC planetary nebula N66 revisited. Nebular kinematics and stellar models Y1 - 2003 SN - 1-583-81148-6 ER - TY - THES A1 - Hamann, Wolf-Rainer A1 - Pena, M. A1 - Gräfener, Götz A1 - Ruiz, M. T. T1 - The central star of the planetary nebula N66 in the Large Magellanic Cloud : a detailed analysis of its dramatic evolution 1983 - 2000 Y1 - 2003 SN - 0004-6361 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - The surface composition of hydrogen-deficient Post-AGB stars Y1 - 2003 ER - TY - JOUR A1 - Pena, M. A1 - Hamann, Wolf-Rainer T1 - The central star of the planetary nebula LMC-N66 : a massive accreting white dwarf? N2 - The central star of the PN LMC-N66 showed an impressive outburst in 1993 - 1994, returning to its initial conditions about 8 years later. Its spectrum resembles that of a WN4.5 star, being the only confirmed central star of planetary nebulae showing such a spectral type. Recent analysis for the central star parameters, performed by Hamann et al. (2003) is presented. They have found that the bolometric luminosity increased by a factor larger than 6, during the outburst. We discuss the possible scenarios which have been proposed to explain the exceptional stellar parameters and the outburst mechanism. The stellar characteristics and the morphology and kinematics of the planetary nebula suggest the presence of binary system (massive star with a less massive companion or, a white dwarf accreting matter in a close- binary system). These cases pose the least severe contradictions with observational constraints. Y1 - 2003 ER - TY - JOUR A1 - Gräfener, Götz A1 - Hamann, Wolf-Rainer T1 - Spectral analysis of the LMC [WC] star SMP 61 N2 - HST UV and optical spectra of the early-type [WC] star SMP 61 in the LMC are analyzed by means of line blanketed non-LTE models for expanding atmospheres. The known distance to the LMC allows a reliable determination of the stellar parameters. The low iron surface abundance of the object possibly indicates a preceding evolution through a very late thermal pulse (VLTP). Y1 - 2003 SN - 1-583-81148-6 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz A1 - Koesterke, Lars T1 - WR Central Stars N2 - Wolf-Rayet type central stars have been analyzed with adequate model atmospheres. The obtained stellar parameters and chemical abundances allow for a discussion of their evolutionary origin. Y1 - 2003 SN - 1-583-81148-6 ER -