TY - JOUR A1 - Fan, Xuanmei A1 - Scaringi, Gianvito A1 - Korup, Oliver A1 - West, A. Joshua A1 - van Westen, Cees J. A1 - Tanyas, Hakan A1 - Hovius, Niels A1 - Hales, Tristram C. A1 - Jibson, Randall W. A1 - Allstadt, Kate E. A1 - Zhang, Limin A1 - Evans, Stephen G. A1 - Xu, Chong A1 - Li, Gen A1 - Pei, Xiangjun A1 - Xu, Qiang A1 - Huang, Runqiu T1 - Earthquake-Induced Chains of Geologic Hazards BT - Patterns, Mechanisms, and Impacts JF - Reviews of geophysics N2 - Large earthquakes initiate chains of surface processes that last much longer than the brief moments of strong shaking. Most moderate‐ and large‐magnitude earthquakes trigger landslides, ranging from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundreds of kilometers downstream. Landslide deposits on slopes can remobilize during heavy rainfall and evolve into debris flows. Cracks and fractures can form and widen on mountain crests and flanks, promoting increased frequency of landslides that lasts for decades. More gradual impacts involve the flushing of excess debris downstream by rivers, which can generate bank erosion and floodplain accretion as well as channel avulsions that affect flooding frequency, settlements, ecosystems, and infrastructure. Ultimately, earthquake sequences and their geomorphic consequences alter mountain landscapes over both human and geologic time scales. Two recent events have attracted intense research into earthquake‐induced landslides and their consequences: the magnitude M 7.6 Chi‐Chi, Taiwan earthquake of 1999, and the M 7.9 Wenchuan, China earthquake of 2008. Using data and insights from these and several other earthquakes, we analyze how such events initiate processes that change mountain landscapes, highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface. KW - earthquake-induced landslides KW - debris flows KW - geohazards KW - landscape evolution KW - sediment cascade KW - continental earthquakes Y1 - 2019 U6 - https://doi.org/10.1029/2018RG000626 SN - 8755-1209 SN - 1944-9208 VL - 57 IS - 2 SP - 421 EP - 503 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Tanyas, Hakan A1 - van Westen, Cees J. A1 - Allstadt, Kate E. A1 - Jessee, M. Anna Nowicki A1 - Gorum, Tolga A1 - Jibson, Randall W. A1 - Godt, Jonathan W. A1 - Sato, Hiroshi P. A1 - Schmitt, Robert G. A1 - Marc, Odin A1 - Hovius, Niels T1 - Presentation and Analysis of a Worldwide Database of Earthquake-Induced Landslide Inventories JF - Journal of geophysical research : Earth surface N2 - Earthquake-induced landslide (EQIL) inventories are essential tools to extend our knowledge of the relationship between earthquakes and the landslides they can trigger. Regrettably, such inventories are difficult to generate and therefore scarce, and the available ones differ in terms of their quality and level of completeness. Moreover, access to existing EQIL inventories is currently difficult because there is no centralized database. To address these issues, we compiled EQIL inventories from around the globe based on an extensive literature study. The database contains information on 363 landslide-triggering earthquakes and includes 66 digital landslide inventories. To make these data openly available, we created a repository to host the digital inventories that we have permission to redistribute through the U.S. Geological Survey ScienceBase platform. It can grow over time as more authors contribute their inventories. We analyze the distribution of EQIL events by time period and location, more specifically breaking down the distribution by continent, country, and mountain region. Additionally, we analyze frequency distributions of EQIL characteristics, such as the approximate area affected by landslides, total number of landslides, maximum distance from fault rupture zone, and distance from epicenter when the fault plane location is unknown. For the available digital EQIL inventories, we examine the underlying characteristics of landslide size, topographic slope, roughness, local relief, distance to streams, peak ground acceleration, peak ground velocity, and Modified Mercalli Intensity. Also, we present an evaluation system to help users assess the suitability of the available inventories for different types of EQIL studies and model development. Y1 - 2017 U6 - https://doi.org/10.1002/2017JF004236 SN - 2169-9003 SN - 2169-9011 VL - 122 SP - 1991 EP - 2015 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kaya, Mustafa Yücel A1 - Dupont-Nivet, Guillaume A1 - Frieling, Joost A1 - Fioroni, Chiara A1 - Rohrmann, Alexander A1 - Altıner, Sevinç Özkan A1 - Vardar, Ezgi A1 - Tanyas, Hakan A1 - Mamtimin, Mehmut A1 - Zhaojie, Guo T1 - The Eurasian epicontinental sea was an important carbon sink during the Palaeocene-Eocene thermal maximum JF - Communications earth and environment N2 - The Palaeocene-Eocene Thermal Maximum (ca. 56 million years ago) offers a primary analogue for future global warming and carbon cycle recovery. Yet, where and how massive carbon emissions were mitigated during this climate warming event remains largely unknown. Here we show that organic carbon burial in the vast epicontinental seaways that extended over Eurasia provided a major carbon sink during the Palaeocene-Eocene Thermal Maximum. We coupled new and existing stratigraphic analyses to a detailed paleogeographic framework and using spatiotemporal interpolation calculated ca. 720–1300 Gt organic carbon excess burial, focused in the eastern parts of the Eurasian epicontinental seaways. A much larger amount (2160–3900 Gt C, and when accounting for the increase in inundated shelf area 7400–10300 Gt C) could have been sequestered in similar environments globally. With the disappearance of most epicontinental seas since the Oligocene-Miocene, an effective negative carbon cycle feedback also disappeared making the modern carbon cycle critically dependent on the slower silicate weathering feedback. Y1 - 2022 U6 - https://doi.org/10.1038/s43247-022-00451-4 SN - 2662-4435 VL - 3 IS - 1 PB - Springer Nature CY - London ER -