TY - JOUR A1 - Leong, Jia Xuan A1 - Raffeiner, Margot A1 - Spinti, Daniela A1 - Langin, Gautier A1 - Franz-Wachtel, Mirita A1 - Guzman, Andrew R. A1 - Kim, Jung-Gun A1 - Pandey, Pooja A1 - Minina, Alyona E. A1 - Macek, Boris A1 - Hafren, Anders A1 - Bozkurt, Tolga O. A1 - Mudgett, Mary Beth A1 - Börnke, Frederik A1 - Hofius, Daniel A1 - Uestuen, Suayib T1 - A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component JF - The EMBO journal N2 - Beyond its role in cellular homeostasis, autophagy plays anti- and promicrobial roles in host-microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well-described in animals, the extent to which xenophagy contributes to plant-bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type-III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense-related autophagy in plant-bacteria interactions. KW - autophagy KW - effectors KW - immunity KW - ubiquitination KW - xenophagy Y1 - 2022 U6 - https://doi.org/10.15252/embj.2021110352 SN - 0261-4189 SN - 1460-2075 VL - 41 IS - 13 PB - Wiley CY - Hoboken ER -