TY - JOUR A1 - Wahmkow, Gunnar A1 - Cassel, Michael A1 - Mayer, Frank A1 - Baur, Heiner T1 - Effects of different medial arch support heights on rearfoot kinematics JF - PLoS one N2 - Background Foot orthoses are usually assumed to be effective by optimizing mechanically dynamic rearfoot configuration. However, the effect from a foot orthosis on kinematics that has been demonstrated scientifically has only been marginal. The aim of this study was to examine the effect of different heights in medial arch-supported foot orthoses on rear foot motion during gait. Methods Nineteen asymptomatic runners (36±11years, 180±5cm, 79±10kg; 41±22km/week) participated in the study. Trials were recorded at 3.1 mph (5 km/h) on a treadmill. Athletes walked barefoot and with 4 different not customized medial arch-supported foot orthoses of various arch heights (N:0 mm, M:30 mm, H:35 mm, E:40mm). Six infrared cameras and the `Oxford Foot Model´ were used to capture motion. The average stride in each condition was calculated from 50 gait cycles per condition. Eversion excursion and internal tibia rotation were analyzed. Descriptive statistics included calculating the mean ± SD and 95% CIs. Group differences by condition were analyzed by one factor (foot orthoses) repeated measures ANOVA (α = 0.05). Results Eversion excursion revealed the lowest values for N and highest for H (B:4.6°±2.2°; 95% CI [3.1;6.2]/N:4.0°±1.7°; [2.9;5.2]/M:5.2°±2.6°; [3.6;6.8]/H:6.2°±3.3°; [4.0;8.5]/E:5.1°±3.5°; [2.8;7.5]) (p>0.05). Range of internal tibia rotation was lowest with orthosis H and highest with E (B:13.3°±3.2°; 95% CI [11.0;15.6]/N:14.5°±7.2°; [9.2;19.6]/M:13.8°±5.0°; [10.8;16.8]/H:12.3°±4.3°; [9.0;15.6]/E:14.9°±5.0°; [11.5;18.3]) (p>0.05). Differences between conditions were small and the intrasubject variation high. Conclusion Our results indicate that different arch support heights have no systematic effect on eversion excursion or the range of internal tibia rotation and therefore might not exert a crucial influence on rear foot alignment during gait. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0172334 SN - 1932-6203 VL - 12 IS - 3 PB - PLoS CY - Lawrence, Kan. ER - TY - JOUR A1 - Intziegianni, Konstantina A1 - Cassel, Michael A1 - Rauf, S. A1 - White, S. A1 - Rector, Michael V. A1 - Kaplick, Hannes A1 - Wahmkow, Gunnar A1 - Kratzenstein, S. A1 - Mayer, Frank T1 - Influence of Age and Pathology on Achilles Tendon Properties During a Single-leg Jump JF - International journal of sports medicine N2 - Prevalence of Achilles tendinopathy increases with age leading to a weaker tendon with predisposition to rupture. Conclusive evidence of the influence of age and pathology on Achilles tendon (AT) properties remains limited, as previous studies are based on standardized isometric conditions. The study investigates the influence of age and pathology on AT properties during single-leg vertical jump (SLVJ). 10 children (C), 10 asymptomatic adults (A), and 10 tendinopathic patients (T) were included. AT elongation [mm] from rest to maximal displacement during a SLVJ on a force-plate was sonographically assessed. AT compliance [mm/N]) and strain [%] was calculated by dividing elongation by peak ground reaction force [N] and length, respectively. One-way ANOVA followed by Bonferroni post-hoc correction (=0.05) were used to compare C with A and A with T. AT elongation (p=0.004), compliance (p=0.001), and strain were found to be statistically significant higher in C (27 +/- 3mm, 0.026 +/- 0.006[mm/N], 13 +/- 2%) compared to A (21 +/- 4mm, 0.017 +/- 0.005[mm/N], 10 +/- 2%). No statistically significant differences (p0.05) was found between A and T (25 +/- 5mm, 0.019 +/- 0.004[mm/N], 12 +/- 3%). During SLVJ, tendon responded differently in regards to age and pathology with children having the most compliant AT. Higher compliance found in healthy tendons might be considered as a protective factor against load-related injuries. KW - children KW - tendinopathy KW - compliance KW - dynamic KW - ultrasonography Y1 - 2016 U6 - https://doi.org/10.1055/s-0042-108198 SN - 0172-4622 SN - 1439-3964 VL - 37 SP - 973 EP - 978 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Wahmkow, Gunnar A1 - Cassel, Michael A1 - Mayer, Frank A1 - Baur, Heiner T1 - Effects of different medial arch support heights on rearfoot kinematics N2 - Background Foot orthoses are usually assumed to be effective by optimizing mechanically dynamic rearfoot configuration. However, the effect from a foot orthosis on kinematics that has been demonstrated scientifically has only been marginal. The aim of this study was to examine the effect of different heights in medial arch-supported foot orthoses on rear foot motion during gait. Methods Nineteen asymptomatic runners (36±11years, 180±5cm, 79±10kg; 41±22km/week) participated in the study. Trials were recorded at 3.1 mph (5 km/h) on a treadmill. Athletes walked barefoot and with 4 different not customized medial arch-supported foot orthoses of various arch heights (N:0 mm, M:30 mm, H:35 mm, E:40mm). Six infrared cameras and the `Oxford Foot Model´ were used to capture motion. The average stride in each condition was calculated from 50 gait cycles per condition. Eversion excursion and internal tibia rotation were analyzed. Descriptive statistics included calculating the mean ± SD and 95% CIs. Group differences by condition were analyzed by one factor (foot orthoses) repeated measures ANOVA (α = 0.05). Results Eversion excursion revealed the lowest values for N and highest for H (B:4.6°±2.2°; 95% CI [3.1;6.2]/N:4.0°±1.7°; [2.9;5.2]/M:5.2°±2.6°; [3.6;6.8]/H:6.2°±3.3°; [4.0;8.5]/E:5.1°±3.5°; [2.8;7.5]) (p>0.05). Range of internal tibia rotation was lowest with orthosis H and highest with E (B:13.3°±3.2°; 95% CI [11.0;15.6]/N:14.5°±7.2°; [9.2;19.6]/M:13.8°±5.0°; [10.8;16.8]/H:12.3°±4.3°; [9.0;15.6]/E:14.9°±5.0°; [11.5;18.3]) (p>0.05). Differences between conditions were small and the intrasubject variation high. Conclusion Our results indicate that different arch support heights have no systematic effect on eversion excursion or the range of internal tibia rotation and therefore might not exert a crucial influence on rear foot alignment during gait. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 348 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402934 ER -