TY - JOUR A1 - Chen, Yao A1 - Wang, Guang A1 - Wang, Xiao-yu A1 - Ma, Zheng-lai A1 - Chen, You-peng A1 - Chuai, Manli A1 - von Websky, Karoline A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - Effects of high salt-exposure on the development of retina and lens in 5.5-Day Chick Embryo JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Excess maternal salt intake during pregnancy may alter fetal development. However; our knowledge on how an increased salt intake during pregnancy influences fetal eye development is limited. In this study, we investigated the effects of high salt treatment on the developing eyes in chick embryos, especially focusing on the development of the retina and the lens. Methods: 5.5 day chick embryos were exposed to 280mosm/l (n=17), or 300mosm/l (n=16) NaCl. The treated embryos were then incubated for 96 hours before they were fixed with 4% paraformaldehyde for H&E staining, whole mount embryo immunostaining and TUNEL staining. BrdU and PH3 incorporation experiments were performed on the chick embryos after high salt treatment. RT-PCR analyses were conducted from chick retina tissues. Results: We demonstrated that high-salt treatment altered the size of eyes in chick embryos, induced malformation of the eyes and impaired the development of the lens and the retina. We found an impaired expression of Paired box 6 (PAX6) and neuronal cells in the developing retina as revealed by neurofilament immunofluorescent staining. There was a reduction in the number of BrdU-positive cells and PH3-positive cells in the retina, indicating an impaired cell proliferation with high salt treatment. High salt treatment also resulted in an increased number of TUNEL-positive cells in the retina, indicating a higher amount of cell death. RT-PCR data displayed that the expression of the pro-apoptotic molecule nerve growth factor (NGF) in chick retina was increased and CyclinD1 was reduced with high-salt treatment. The size of the lens was reduced and Pax6 expression in the lens was significantly inhibited. High salt treatment was detrimental to the migration of neural crest cells. Conclusion: Taken together; our study demonstrated that high salt exposure of 5.5 day chick embryos led to an impairment of retina and lens development, possibly through interfering with Pax6 expression. KW - Chick embryos KW - High osmolarity KW - Retina KW - Lens KW - Pax6 Y1 - 2014 U6 - https://doi.org/10.1159/000363044 SN - 1015-8987 SN - 1421-9778 VL - 34 IS - 3 SP - 804 EP - 817 PB - Karger CY - Basel ER - TY - JOUR A1 - Gao, Lin-rui A1 - Wang, Guang A1 - Zhang, Jing A1 - Li, Shuai A1 - Chuai, Manli A1 - Bao, Yongping A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation JF - Journal of Cellular Physiology N2 - An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI(+) cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. KW - cardiac progenitor migration and differentiation KW - chick embryo KW - heart tube KW - high salt KW - reactive oxygen species Y1 - 2018 U6 - https://doi.org/10.1002/jcp.26528 SN - 0021-9541 SN - 1097-4652 VL - 233 IS - 9 SP - 7120 EP - 7133 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Tian, Guang-Zong A1 - Hu, Jing A1 - Zhang, Heng-Xi A1 - Rademacher, Christoph A1 - Zou, Xiao-Peng A1 - Zheng, Hong-Ning A1 - Xu, Fei A1 - Wang, Xiao-Li A1 - Linker, Torsten A1 - Yin, Jian T1 - Synthesis and conformational analysis of linear homo- and heterooligomers from novel 2-C-branched sugar amino acids (SAAs) JF - Scientific reports N2 - Sugar amino acids (SAAs), as biologically interesting structures bearing both amino and carboxylic acid functional groups represent an important class of multifunctional building blocks. In this study, we develop an easy access to novel SAAs in only three steps starting from nitro compounds in high yields in analytically pure form, easily available by ceric (IV) mediated radical additions. Such novel SAAs have been applied in the assembly of total nine carbopeptoids with the form of linear homo-and heterooligomers for the structural investigations employing circular dichroism (CD) spectroscopy, which suggest that the carbopeptoids emerge a well-extended, left (or right)-handed conformation similar to polyproline II (PPII) helices. NMR studies also clearly demonstrated the presence of ordered secondary structural elements. 2D-ROESY spectra were acquired to identify i+1NH <-> (C1H)-C-i, (C2H)-C-i correlations which support the conformational analysis of tetramers by CD spectroscopy. These findings provide interesting information of SAAs and their oligomers as potential scaffolds for discovering new drugs and materials. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-24927-6 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Cheng, Shifeng A1 - van den Bergh, Erik A1 - Zeng, Peng A1 - Zhong, Xiao A1 - Xu, Jiajia A1 - Liu, Xin A1 - Hofberger, Johannes A1 - de Bruijn, Suzanne A1 - Bhide, Amey S. A1 - Kuelahoglu, Canan A1 - Bian, Chao A1 - Chen, Jing A1 - Fan, Guangyi A1 - Kaufmann, Kerstin A1 - Hall, Jocelyn C. A1 - Becker, Annette A1 - Bräutigam, Andrea A1 - Weber, Andreas P. M. A1 - Shi, Chengcheng A1 - Zheng, Zhijun A1 - Li, Wujiao A1 - Lv, Mingju A1 - Tao, Yimin A1 - Wang, Junyi A1 - Zou, Hongfeng A1 - Quan, Zhiwu A1 - Hibberd, Julian M. A1 - Zhang, Gengyun A1 - Zhu, Xin-Guang A1 - Xu, Xun A1 - Schranz, M. Eric T1 - The Tarenaya hassleriana Genome Provides insight Into Reproductive Trait and Genome Evolution of Crucifers JF - The plant cell N2 - The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-alpha) that is independent of the Brassicaceae-specific duplication (At-alpha) and nested Brassica (Br-a) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes. Y1 - 2013 U6 - https://doi.org/10.1105/tpc.113.113480 SN - 1040-4651 VL - 25 IS - 8 SP - 2813 EP - 2830 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Chen, You-Peng A1 - Li, Jian A1 - Wang, Zi-Neng A1 - Reichetzeder, Christoph A1 - Xu, Hao A1 - Gong, Jian A1 - Chen, Guang-Ji A1 - Pfab, Thiemo A1 - Xiao, Xiao-Min A1 - Hocher, Berthold T1 - Renin angiotensin aldosterone system and glycemia in pregnancy JF - Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion N2 - Background: The renin-angiotensin-aldosterone system (RAAS) is involved in the pathogenesis of insulin resistance and type 2 diabetes in the general population. The RAAS is activated during pregnancy. However, it is unknown whether the RAAS contributes to glycemia in pregnant women. Methods: Plasma renin activity (PRA) and plasma aldosterone levels were quantified at delivery in 689 Chinese mothers. An oral glucose tolerance test in fasted women was performed in the second trimester of pregnancy. The diagnosis of gestational diabetes mellitus (GDM) and impaired glucose tolerance during pregnancy were made according to the guidelines of the Chinese Society of Obstetrics. Results: Plasma aldosterone was significantly higher in pregnant women with GDM as compared to those without impairment of glycemic control (normal pregnancies: 0.27 +/- 0.21 ng/mL, GDM: 0.36 +/- 0.30 ng/mL; p<0.05). Regression analyses revealed that PRA was negatively correlated with fasting blood glucose (FBG) (R-2 = 0.03, p = 0.007), whereas plasma aldosterone and aldosterone/PRA ratio were positively correlated with FBG (R-2 = 0.05, p<0.001 and R-2 = 0.03, p = 0.007, respectively). Multivariable regression analysis models considering relevant confounding factors confirmed these findings. Conclusions: This study demonstrated that fasting blood glucose in pregnant women is inversely correlated with the PRA, whereas plasma aldosterone showed a highly significant positive correlation with fasting blood glucose during pregnancy. Moreover, plasma aldosterone is significantly higher in pregnant women with GDM as compared to those women with normal glucose tolerance during pregnancy. Although causality cannot be proven in association studies, these data may indicate that the RAAS during pregnancy contributes to the pathogenesis of insulin resistance/new onset of diabetes during pregnancy. KW - Renin-angiotensin-aldosterone system KW - pregnancy KW - fasting blood glucose KW - glycemic control Y1 - 2012 SN - 1433-6510 VL - 58 IS - 5-6 SP - 527 EP - 533 PB - Clin Lab Publ., Verl. Klinisches Labor CY - Heidelberg ER - TY - GEN A1 - Wang, Guang A1 - Li, Pei-zhi A1 - Zhang, Shi-yao A1 - Zhong, Shan A1 - Chu, Chang A1 - Zeng, Shufei A1 - Yan, Yu A1 - Cheng, Xin A1 - Chuai, Manli A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - Lipopolysaccharides (LPS) Induced Angiogenesis During Chicken Embryogenesis is Abolished by Combined ETA/ETB Receptor Blockade T2 - Cellular Physiology and Biochemistry N2 - Background/Aims: Angiogenesis plays a key role during embryonic development. The vascular endothelin (ET) system is involved in the regulation of angiogenesis. Lipopolysaccharides (LPS) could induce angiogenesis. The effects of ET blockers on baseline and LPS-stimulated angiogenesis during embryonic development remain unknown so far. Methods: The blood vessel density (BVD) of chorioallantoic membranes (CAMs), which were treated with saline (control), LPS, and/or BQ123 and the ETB blocker BQ788, were quantified and analyzed using an IPP 6.0 image analysis program. Moreover, the expressions of ET-1, ET-2, ET3, ET receptor A (ETRA), ET receptor B (ETRB) and VEGFR2 mRNA during embryogenesis were analyzed by semi-quantitative RT-PCR. Results: All components of the ET system are detectable during chicken embryogenesis. LPS increased angiogenesis substantially. This process was completely blocked by the treatment of a combination of the ETA receptor blockers-BQ123 and the ETB receptor blocker BQ788. This effect was accompanied by a decrease in ETRA, ETRB, and VEGFR2 gene expression. However, the baseline angiogenesis was not affected by combined ETA/ETB receptor blockade. Conclusion: During chicken embryogenesis, the LPS-stimulated angiogenesis, but not baseline angiogenesis, is sensitive to combined ETA/ETB receptor blockade. (C) 2018 The Author(s) Published by S. Karger AG, Basel T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 615 KW - Lipopolysaccharides (LPS) KW - Angiogenesis KW - Chicken chorioallantoic membrane (CAM) KW - Endothelin (ET) Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424552 SN - 1866-8372 IS - 615 ER - TY - JOUR A1 - Wang, Guang A1 - Li, Pei-zhi A1 - Zhang, Shi-yao A1 - Zhong, Shan A1 - Chu, Chang A1 - Zeng, Shufei A1 - Yan, Yu A1 - Cheng, Xin A1 - Chuai, Manli A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - Lipopolysaccharides (LPS) Induced Angiogenesis During Chicken Embryogenesis is Abolished by Combined ETA/ETB Receptor Blockade JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Angiogenesis plays a key role during embryonic development. The vascular endothelin (ET) system is involved in the regulation of angiogenesis. Lipopolysaccharides (LPS) could induce angiogenesis. The effects of ET blockers on baseline and LPS-stimulated angiogenesis during embryonic development remain unknown so far. Methods: The blood vessel density (BVD) of chorioallantoic membranes (CAMs), which were treated with saline (control), LPS, and/or BQ123 and the ETB blocker BQ788, were quantified and analyzed using an IPP 6.0 image analysis program. Moreover, the expressions of ET-1, ET-2, ET3, ET receptor A (ETRA), ET receptor B (ETRB) and VEGFR2 mRNA during embryogenesis were analyzed by semi-quantitative RT-PCR. Results: All components of the ET system are detectable during chicken embryogenesis. LPS increased angiogenesis substantially. This process was completely blocked by the treatment of a combination of the ETA receptor blockers-BQ123 and the ETB receptor blocker BQ788. This effect was accompanied by a decrease in ETRA, ETRB, and VEGFR2 gene expression. However, the baseline angiogenesis was not affected by combined ETA/ETB receptor blockade. Conclusion: During chicken embryogenesis, the LPS-stimulated angiogenesis, but not baseline angiogenesis, is sensitive to combined ETA/ETB receptor blockade. KW - Lipopolysaccharides (LPS) KW - Angiogenesis KW - Chicken chorioallantoic membrane (CAM) KW - Endothelin (ET) Y1 - 2018 U6 - https://doi.org/10.1159/000492547 SN - 1015-8987 SN - 1421-9778 VL - 48 IS - 5 SP - 2084 EP - 2090 PB - Karger CY - Basel ER - TY - JOUR A1 - Zeuschner, Steffen Peer A1 - Wang, Xi-Guang A1 - Deb, Marwan A1 - Popova, Elena A1 - Malinowski, Gregory A1 - Hehn, Michel A1 - Keller, Niels A1 - Berakdar, Jamal A1 - Bargheer, Matias T1 - Standing spin wave excitation in Bi BT - YIG films via temperature-induced anisotropy changes and magneto-elastic coupling JF - Physical review : B, Condensed matter and materials physics N2 - Based on micromagnetic simulations and experimental observations of the magnetization and lattice dynamics after the direct optical excitation of the magnetic insulator Bi : YIG or indirect excitation via an optically opaque Pt/Cu double layer, we disentangle the dynamical effects of magnetic anisotropy and magneto-elastic coupling. The strain and temperature of the lattice are quantified via modeling ultrafast x-ray diffraction data. Measurements of the time-resolved magneto-optical Kerr effect agree well with the magnetization dynamics simulated according to the excitation via two mechanisms: the magneto-elastic coupling to the experimentally verified strain dynamics and the ultrafast temperature-induced transient change in the magnetic anisotropy. The numerical modeling proves that, for direct excitation, both mechanisms drive the fundamental mode with opposite phase. The relative ratio of standing spin wave amplitudes of higher-order modes indicates that both mechanisms are substantially active. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.106.134401 SN - 2469-9950 SN - 2469-9969 VL - 106 IS - 13 PB - American Physical Society CY - College Park ER -