TY - JOUR A1 - Lacroix, Andre A1 - Kressig, Reto W. A1 - Mühlbauer, Thomas A1 - Gschwind, Yves J. A1 - Pfenninger, Barbara A1 - Bruegger, Othmar A1 - Granacher, Urs T1 - Effects of a Supervised versus an Uniupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial JF - Gerontology N2 - Background: Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. Objective:This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Methods: Sixty-six older adults (men: 25, women: 41; age 73 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Results: Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group x time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Conclusion: Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. (C) 2015 The Author(s) Published by S. Karger AG, Basel KW - Sensorimotor training KW - Resistance training KW - Gym-based/home-based training KW - Detraining KW - Seniors Y1 - 2016 U6 - https://doi.org/10.1159/000442087 SN - 0304-324X SN - 1423-0003 VL - 62 SP - 275 EP - 288 PB - Karger CY - Basel ER - TY - GEN A1 - Gschwind, Yves J. A1 - Kressig, Reto W. A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Pfenninger, Barbara A1 - Granacher, Urs T1 - A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults BT - study protocol for a randomized controlled trial T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale -International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version (` 3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention. KW - seniors KW - fall risk assessment KW - resistance training KW - postural stability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427104 SN - 1866-8364 IS - 604 ER - TY - JOUR A1 - Gschwind, Yves J. A1 - Kressig, Reto W. A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Pfenninger, Barbara A1 - Granacher, Urs T1 - A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults - study protocol for a randomized controlled trial JF - BMC geriatrics N2 - Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale -International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version (` 3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention. KW - Seniors KW - Fall risk assessment KW - Resistance training KW - Postural stability Y1 - 2013 U6 - https://doi.org/10.1186/1471-2318-13-105 SN - 1471-2318 VL - 13 IS - 4 PB - BioMed Central CY - London ER - TY - JOUR A1 - Gschwind, Yves J. A1 - Bridenbaugh, Stephanie A. A1 - Reinhard, Sarah A1 - Granacher, Urs A1 - Monsch, Andreas U. A1 - Kressig, Reto W. T1 - Ginkgo biloba special extract LI 1370 improves dual-task walking in patients with MCI: a randomised, double-blind, placebo-controlled exploratory study JF - Aging clinical and experimental research N2 - Background In patients with mild cognitive impairment (MCI), gait instability, particularly in dual-task situations, has been associated with impaired executive function and an increased fall risk. Ginkgo biloba extract (GBE) could be an effective mean to improve gait stability. Aims This study investigated the effect of GBE on spatiotemporal gait parameters of MCI patients while walking under single and dual-task conditions. Methods Fifty patients aged 50-85 years with MCI and associated dual-task-related gait impairment participated in this randomised, double-blind, placebo-controlled, exploratory phase IV drug trial. Intervention group (IG) patients received GBE (Symfona (R) forte 120 mg) twice-daily for 6 months while control group (CG) patients received placebo capsules. A 6-month open-label phase with identical GBE dosage followed. Gait was quantified at months 0, 3, 6 and 12. Results After 6 months, dual-task-related cadence increased in the IG compared to the CG (p = 0.019, d = 0.71). No significant changes, but GBE-associated numerical non-significant trends were found after 6-month treatment for dual-task-related gait velocity and stride time variability. Discussion Findings suggest that 120 mg of GBE twice-daily for at least 6 months may improve dual-task-related gait performance in patients with MCI. Conclusions The observed gait improvements add to the understanding of the self-reported unspecified improvements among MCI patients when treated with standardised GBE. KW - Gait KW - Walking KW - Executive function KW - Mild cognitive impairment KW - Cognitive enhancer KW - Ginkgo biloba extract Y1 - 2017 U6 - https://doi.org/10.1007/s40520-016-0699-y SN - 1594-0667 SN - 1720-8319 VL - 29 SP - 609 EP - 619 PB - Springer CY - New York ER - TY - GEN A1 - Gschwind, Yves J. A1 - Bridenbaugh, Stephanie A. A1 - Reinhard, Sarah A1 - Granacher, Urs A1 - Monsch, Andreas U. A1 - Kressig, Reto W. T1 - Ginkgo biloba special extract LI 1370 improves dual-task walking in patients with MCI BT - a randomised, double-blind, placebo-controlled exploratory study T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Background In patients with mild cognitive impairment (MCI), gait instability, particularly in dual-task situations, has been associated with impaired executive function and an increased fall risk. Ginkgo biloba extract (GBE) could be an effective mean to improve gait stability. Aims This study investigated the effect of GBE on spatiotemporal gait parameters of MCI patients while walking under single and dual-task conditions. Methods Fifty patients aged 50-85 years with MCI and associated dual-task-related gait impairment participated in this randomised, double-blind, placebo-controlled, exploratory phase IV drug trial. Intervention group (IG) patients received GBE (Symfona (R) forte 120 mg) twice-daily for 6 months while control group (CG) patients received placebo capsules. A 6-month open-label phase with identical GBE dosage followed. Gait was quantified at months 0, 3, 6 and 12. Results After 6 months, dual-task-related cadence increased in the IG compared to the CG (p = 0.019, d = 0.71). No significant changes, but GBE-associated numerical non-significant trends were found after 6-month treatment for dual-task-related gait velocity and stride time variability. Discussion Findings suggest that 120 mg of GBE twice-daily for at least 6 months may improve dual-task-related gait performance in patients with MCI. Conclusions The observed gait improvements add to the understanding of the self-reported unspecified improvements among MCI patients when treated with standardised GBE. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 870 KW - gait KW - walking KW - executive function KW - mild cognitive impairment KW - cognitive enhancer KW - Ginkgo biloba extract Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434796 SN - 1866-8372 IS - 870 SP - 609 EP - 619 ER -