TY - JOUR A1 - Verma, Meetu A1 - Denker, Carsten A1 - Böhm, F. A1 - Balthasar, H. A1 - Fischer, C. E. A1 - Kuckein, Christoph A1 - Gonzalez, N. Bello A1 - Berkefeld, T. A1 - Collados Vera, M. A1 - Diercke, Andrea A1 - Feller, A. A1 - Gonzalez Manrique, Sergio Javier A1 - Hofmann, A. A1 - Lagg, A. A1 - Nicklas, H. A1 - Orozco Suarez, D. A1 - Pator Yabar, A. A1 - Rezaei, R. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396 JF - Astronomische Nachrichten = Astronomical notes N2 - Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si i.1082.7 nm line, the chromospheric He I lambda 1083.0 nm triplet, and the photospheric Ca I lambda 1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the " Stokes Inversions based on Response functions" (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots. (C) 2016 WILEY-VCH Verlag GmbH& Co.KGaA, Weinheim KW - Sun: magnetic fields KW - sunspots KW - methods: data analysis KW - techniques: polarimetric KW - techniques: spectroscopic Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612447 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1090 EP - 1098 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Denker, Carsten A1 - Heibel, C. A1 - Rendtel, J. A1 - Arlt, K. A1 - Balthasar, H. A1 - Diercke, Andrea A1 - Gonzalez Manrique, Sergio Javier A1 - Hofmann, A. A1 - Kuckein, Christoph A1 - Önel, H. A1 - Valliappan, Senthamizh Pavai A1 - Staude, J. A1 - Verma, Meetu T1 - Solar physics at the Einstein Tower JF - Astronomische Nachrichten = Astronomical notes KW - history and philosophy of astronomy KW - Sun: photosphere KW - Sun: magnetic fields KW - techniques: spectroscopic KW - telescopes Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612442 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1105 EP - 1113 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gonzalez, Javier T1 - Phylogenetic position of the most endangered Chilean bird: the Masafuera Rayadito (Aphrastura masafuerae; Furnariidae) JF - Tropical conservation science N2 - Masafuera Rayadito (Aphrastura masafuerae; Furnariidae) is a Critically Endangered species endemic to Alejandro Selkirk Island (Juan Fernandez Archipelago, Chile). Categorized as probably extinct in 1980, later estimates, ranging from 140 (in 2002) to 500 individuals (in 2006-2007), showed a fluctuating population size of the species. The grazing of goats and cattle has increased habitat loss for the species. Other threats are lack of nesting sites, introduced species such as feral cats and rats (Rattus rattus and R. norvegicus), and increased populations of natural predators like the Masafuera Hawk. In order to increase the availability of nesting sites, 81 nest boxes were installed in different habitats in 2006, with evidence of use during subsequent breeding seasons. Despite conservation concerns, however, no genetic studies are yet available for this furnariid. This study reports for the first time the levels of genetic divergence of the species, based on nucleotide sequences of the mitochondrial DNA (cytochrome oxidase subunit 1 gene; COI). Aphrastura masafuerae is closely related to a widespread species of furnariid distributed mainly in Chile on the mainland, the Thorn-tailed Rayadito (A. spinicauda). The Masafuera Rayadito diverged from its mainland sister species probably during the Pleistocene 0.57 +/- 0.19 Myr ago. Consistent with mitochondrial and nuclear molecular clocks, the estimated time of the split between A. masafuerae and A. spinicauda is in perfect agreement with the geological origin of the Juan Fernandez Archipelago, which is of volcanic origin. In order to assess genetic variability within the population of this fragile bird, further studies using a multi-locus genetic approach at the population level are necessary. KW - Furnariidae KW - Juan Fernandez Archipelago KW - mitochondrial DNA KW - molecular clock KW - Threatened species Y1 - 2014 SN - 1940-0829 VL - 7 IS - 4 SP - 677 EP - 689 PB - Mongabay.com CY - Menlo Park ER -