TY - JOUR A1 - Martinez Gonzalez, M. J. A1 - Pastor Yabar, A. A1 - Lagg, A. A1 - Asensio Ramos, A. A1 - Collados Vera, M. A1 - Solanki, S. K. A1 - Balthasar, H. A1 - Berkefeld, T. A1 - Denker, Carsten A1 - Doerr, H. P. A1 - Feller, A. A1 - Franz, M. A1 - González Manrique, Sergio Javier A1 - Hofmann, A. A1 - Kneer, F. A1 - Kuckein, Christoph A1 - Louis, R. A1 - von der Lühe, O. A1 - Nicklas, H. A1 - Orozco, D. A1 - Rezaei, R. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Verma, Meetu A1 - Waldman, T. A1 - Volkmer, R. T1 - Inference of magnetic fields in the very quiet Sun JF - Journal of geophysical research : Earth surface N2 - Context. Over the past 20 yr, the quietest areas of the solar surface have revealed a weak but extremely dynamic magnetism occurring at small scales (<500 km), which may provide an important contribution to the dynamics and energetics of the outer layers of the atmosphere. Understanding this magnetism requires the inference of physical quantities from high-sensitivity spectro-polarimetric data with high spatio-temporal resolution. Aims. We present high-precision spectro-polarimetric data with high spatial resolution (0.4") of the very quiet Sun at 1.56 mu m obtained with the GREGOR telescope to shed some light on this complex magnetism. Methods. We used inversion techniques in two main approaches. First, we assumed that the observed profiles can be reproduced with a constant magnetic field atmosphere embedded in a field-free medium. Second, we assumed that the resolution element has a substructure with either two constant magnetic atmospheres or a single magnetic atmosphere with gradients of the physical quantities along the optical depth, both coexisting with a global stray-light component. Results. Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak (similar to 150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area similar to 50% are two-lobed Stokes V profiles, meaning that 23% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50% based on the regular profiles. Therefore, 12% of the field of view harbour hG fields with filling factors typically below 30%. At our present spatial resolution, 70% of the pixels apparently are non-magnetised. KW - Sun: atmosphere KW - Sun: magnetic fields KW - techniques: polarimetric KW - methods: observational Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628449 SN - 1432-0746 VL - 596 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Verma, Meetu A1 - Denker, Carsten A1 - Balthasar, H. A1 - Kuckein, Christoph A1 - González Manrique, Sergio Javier A1 - Sobotka, M. A1 - Gonzalez, N. Bello A1 - Hoch, S. A1 - Diercke, Andrea A1 - Kummerow, Philipp A1 - Berkefeld, T. A1 - Collados Vera, M. A1 - Feller, A. A1 - Hofmann, A. A1 - Kneer, F. A1 - Lagg, A. A1 - Löhner-Böttcher, J. A1 - Nicklas, H. A1 - Pastor Yabar, A. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Schubert, M. A1 - Sigwarth, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Horizontal flow fields in and around a small active region The transition period between flux emergence and decay JF - Polymers N2 - Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims. Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods. The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Perot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results. The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s(-1) is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules. KW - Sun: photosphere KW - Sun: magnetic fields KW - techniques: image processing KW - methods: data analysis Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628380 SN - 1432-0746 VL - 596 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gonzalez Manrique, Sergio Javier A1 - Kuckein, Christoph A1 - Pastor Yabar, A. A1 - Collados Vera, M. A1 - Denker, Carsten A1 - Fischer, C. E. A1 - Gömöry, P. A1 - Diercke, Andrea A1 - Gonzalez, N. Bello A1 - Schlichenmaier, R. A1 - Balthasar, H. A1 - Berkefeld, T. A1 - Feller, A. A1 - Hoch, S. A1 - Hofmann, A. A1 - Kneer, F. A1 - Lagg, A. A1 - Nicklas, H. A1 - Orozco Suarez, D. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Verma, Meetu A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Fitting peculiar spectral profiles in He I 10830 angstrom absorption features JF - Astronomische Nachrichten = Astronomical notes N2 - The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He i 10830 triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He i 10830 triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub-and supersonic downflow velocities of up to 32 km s(-1) for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest. (C) 2016 WILEY-VCH Verlag GmbH& Co. KGaA, Weinheim KW - Sun: chromosphere KW - methods: data analysis KW - techniques: spectroscopic KW - line: profiles Y1 - 2016 U6 - https://doi.org/10.1002/asna.201512433 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1057 EP - 1063 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Verma, Meetu A1 - Denker, Carsten A1 - Böhm, F. A1 - Balthasar, H. A1 - Fischer, C. E. A1 - Kuckein, Christoph A1 - Gonzalez, N. Bello A1 - Berkefeld, T. A1 - Collados Vera, M. A1 - Diercke, Andrea A1 - Feller, A. A1 - Gonzalez Manrique, Sergio Javier A1 - Hofmann, A. A1 - Lagg, A. A1 - Nicklas, H. A1 - Orozco Suarez, D. A1 - Pator Yabar, A. A1 - Rezaei, R. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396 JF - Astronomische Nachrichten = Astronomical notes N2 - Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si i.1082.7 nm line, the chromospheric He I lambda 1083.0 nm triplet, and the photospheric Ca I lambda 1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the " Stokes Inversions based on Response functions" (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots. (C) 2016 WILEY-VCH Verlag GmbH& Co.KGaA, Weinheim KW - Sun: magnetic fields KW - sunspots KW - methods: data analysis KW - techniques: polarimetric KW - techniques: spectroscopic Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612447 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1090 EP - 1098 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Denker, Carsten A1 - Kuckein, Christoph A1 - Verma, Meetu A1 - Manrique Gonzalez, Sergio Javier Gonzalez A1 - Diercke, Andrea A1 - Enke, Harry A1 - Klar, Jochen A1 - Balthasar, Horst A1 - Louis, Rohan E. A1 - Dineva, Ekaterina Ivanova T1 - High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5 m GREGOR solar telescope (2014–2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry–Pérot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures. KW - astronomical databases KW - methods: data analysis KW - Sun: chromosphere KW - Sun: photosphere KW - techniques: image processing KW - techniques: spectroscopic Y1 - 2018 U6 - https://doi.org/10.3847/1538-4365/aab773 SN - 0067-0049 SN - 1538-4365 VL - 236 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Denker, Carsten A1 - Dineva, Ekaterina Ivanova A1 - Balthasar, Horst A1 - Verma, Meetu A1 - Kuckein, Christoph A1 - Diercke, Andrea A1 - Manrique Gonzalez, Sergio Javier Gonzalez T1 - Image Quality in High-resolution and High-cadence Solar Imaging JF - Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics N2 - Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrastrich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of theMFGS algorithm uncover the field-and structure-dependency of this imagequality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration. KW - Granulation KW - Sunspots KW - Instrumental effects KW - Instrumentation and data management Y1 - 2018 U6 - https://doi.org/10.1007/s11207-018-1261-1 SN - 0038-0938 SN - 1573-093X VL - 293 IS - 3 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Gonzalez Manrique, Sergio Javier A1 - Kuckein, Christoph A1 - Collados, M. A1 - Denker, Carsten A1 - Solanki, S. K. A1 - Gomory, P. A1 - Verma, Meetu A1 - Balthasar, H. A1 - Lagg, A. A1 - Diercke, Andrea T1 - Temporal evolution of arch filaments as seen in He I 10 830 angstrom JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time. KW - Sun: chromosphere KW - Sun: activity KW - methods: observational KW - methods: data analysis KW - techniques: high angular resolution Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201832684 SN - 1432-0746 VL - 617 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Wutke, Saskia A1 - Sandoval-Castellanos, Edson A1 - Benecke, Norbert A1 - Döhle, Hans-Jürgen A1 - Friederich, Susanne A1 - Gonzalez, Javier A1 - Hofreiter, Michael A1 - Lougas, Lembi A1 - Magnell, Ola A1 - Malaspinas, Anna-Sapfo A1 - Morales-Muniz, Arturo A1 - Orlando, Ludovic A1 - Reissmann, Monika A1 - Trinks, Alexandra A1 - Ludwig, Arne T1 - Decline of genetic diversity in ancient domestic stallions in Europe JF - Science Advances N2 - Present-day domestic horses are immensely diverse in their maternally inherited mitochondrial DNA, yet they show very little variation on their paternally inherited Y chromosome. Although it has recently been shown that Y chromosomal diversity in domestic horses was higher at least until the Iron Age, when and why this diversity disappeared remain controversial questions. We genotyped 16 recently discovered Y chromosomal single-nucleotide polymorphisms in 96 ancient Eurasian stallions spanning the early domestication stages (Copper and Bronze Age) to the Middle Ages. Using this Y chromosomal time series, which covers nearly the entire history of horse domestication, we reveal how Y chromosomal diversity changed over time. Our results also show that the lack of multiple stallion lineages in the extant domestic population is caused by neither a founder effect nor random demographic effects but instead is the result of artificial selection-initially during the Iron Age by nomadic people from the Eurasian steppes and later during the Roman period. Moreover, the modern domestic haplotype probably derived from another, already advantageous, haplotype, most likely after the beginning of the domestication. In line with recent findings indicating that the Przewalski and domestic horse lineages remained connected by gene flow after they diverged about 45,000 years ago, we present evidence for Y chromosomal introgression of Przewalski horses into the gene pool of European domestic horses at least until medieval times. Y1 - 2018 U6 - https://doi.org/10.1126/sciadv.aap9691 SN - 2375-2548 VL - 4 IS - 4 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Verma, Meetu A1 - Denker, Carsten A1 - Balthasar, H. A1 - Kuckein, Christoph A1 - Rezaei, R. A1 - Sobotka, Michal A1 - Deng, N. A1 - Wang, Haimin A1 - Tritschler, A. A1 - Collados, M. A1 - Diercke, Andrea A1 - González Manrique, Sergio Javier T1 - High-resolution imaging and near-infrared spectroscopy of penumbral decay JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us to scrutinize the velocity and magnetic fields of sunspots and their surroundings. Methods. Active region NOAA 12597 was observed on 2016 September 24 with the 1.5-meter GREGOR solar telescope using high-spatial-resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with local correlation tracking, whereas line-of-sight (LOS) velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the "Stokes Inversions based on Response functions" (SIR) code for the Si I and Ca I NIR lines. Results. At the time of the GREGOR observations, the leading sunspot had two light bridges indicating the onset of its decay. One of the light bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55 degrees clockwise over 12 h. Conclusions. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing the flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale. KW - Sun: photosphere KW - sunspots KW - Sun: magnetic fields KW - Sun: infrared KW - techniques: imaging spectroscopy KW - techniques: spectroscopic Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731801 SN - 1432-0746 VL - 614 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Dengler, Jürgen A1 - Wagner, Viktoria A1 - Dembicz, Iwona A1 - Garcia-Mijangos, Itziar A1 - Naqinezhad, Alireza A1 - Boch, Steffen A1 - Chiarucci, Alessandro A1 - Conradi, Timo A1 - Filibeck, Goffredo A1 - Guarino, Riccardo A1 - Janisova, Monika A1 - Steinbauer, Manuel J. A1 - Acic, Svetlana A1 - Acosta, Alicia T. R. A1 - Akasaka, Munemitsu A1 - Allers, Marc-Andre A1 - Apostolova, Iva A1 - Axmanova, Irena A1 - Bakan, Branko A1 - Baranova, Alina A1 - Bardy-Durchhalter, Manfred A1 - Bartha, Sandor A1 - Baumann, Esther A1 - Becker, Thomas A1 - Becker, Ute A1 - Belonovskaya, Elena A1 - Bengtsson, Karin A1 - Benito Alonso, Jose Luis A1 - Berastegi, Asun A1 - Bergamini, Ariel A1 - Bonini, Ilaria A1 - Bruun, Hans Henrik A1 - Budzhak, Vasyl A1 - Bueno, Alvaro A1 - Antonio Campos, Juan A1 - Cancellieri, Laura A1 - Carboni, Marta A1 - Chocarro, Cristina A1 - Conti, Luisa A1 - Czarniecka-Wiera, Marta A1 - De Frenne, Pieter A1 - Deak, Balazs A1 - Didukh, Yakiv P. A1 - Diekmann, Martin A1 - Dolnik, Christian A1 - Dupre, Cecilia A1 - Ecker, Klaus A1 - Ermakov, Nikolai A1 - Erschbamer, Brigitta A1 - Escudero, Adrian A1 - Etayo, Javier A1 - Fajmonova, Zuzana A1 - Felde, Vivian A. A1 - Fernandez Calzado, Maria Rosa A1 - Finckh, Manfred A1 - Fotiadis, Georgios A1 - Fracchiolla, Mariano A1 - Ganeva, Anna A1 - Garcia-Magro, Daniel A1 - Gavilan, Rosario G. A1 - Germany, Markus A1 - Giladi, Itamar A1 - Gillet, Francois A1 - Giusso del Galdo, Gian Pietro A1 - Gonzalez, Jose M. A1 - Grytnes, John-Arvid A1 - Hajek, Michal A1 - Hajkova, Petra A1 - Helm, Aveliina A1 - Herrera, Mercedes A1 - Hettenbergerova, Eva A1 - Hobohm, Carsten A1 - Huellbusch, Elisabeth M. A1 - Ingerpuu, Nele A1 - Jandt, Ute A1 - Jeltsch, Florian A1 - Jensen, Kai A1 - Jentsch, Anke A1 - Jeschke, Michael A1 - Jimenez-Alfaro, Borja A1 - Kacki, Zygmunt A1 - Kakinuma, Kaoru A1 - Kapfer, Jutta A1 - Kavgaci, Ali A1 - Kelemen, Andras A1 - Kiehl, Kathrin A1 - Koyama, Asuka A1 - Koyanagi, Tomoyo F. A1 - Kozub, Lukasz A1 - Kuzemko, Anna A1 - Kyrkjeeide, Magni Olsen A1 - Landi, Sara A1 - Langer, Nancy A1 - Lastrucci, Lorenzo A1 - Lazzaro, Lorenzo A1 - Lelli, Chiara A1 - Leps, Jan A1 - Loebel, Swantje A1 - Luzuriaga, Arantzazu L. A1 - Maccherini, Simona A1 - Magnes, Martin A1 - Malicki, Marek A1 - Marceno, Corrado A1 - Mardari, Constantin A1 - Mauchamp, Leslie A1 - May, Felix A1 - Michelsen, Ottar A1 - Mesa, Joaquin Molero A1 - Molnar, Zsolt A1 - Moysiyenko, Ivan Y. A1 - Nakaga, Yuko K. A1 - Natcheva, Rayna A1 - Noroozi, Jalil A1 - Pakeman, Robin J. A1 - Palpurina, Salza A1 - Partel, Meelis A1 - Paetsch, Ricarda A1 - Pauli, Harald A1 - Pedashenko, Hristo A1 - Peet, Robert K. A1 - Pielech, Remigiusz A1 - Pipenbaher, Natasa A1 - Pirini, Chrisoula A1 - Pleskova, Zuzana A1 - Polyakova, Mariya A. A1 - Prentice, Honor C. A1 - Reinecke, Jennifer A1 - Reitalu, Triin A1 - Pilar Rodriguez-Rojo, Maria A1 - Rolecek, Jan A1 - Ronkin, Vladimir A1 - Rosati, Leonardo A1 - Rosen, Ejvind A1 - Ruprecht, Eszter A1 - Rusina, Solvita A1 - Sabovljevic, Marko A1 - Maria Sanchez, Ana A1 - Savchenko, Galina A1 - Schuhmacher, Oliver A1 - Skornik, Sonja A1 - Sperandii, Marta Gaia A1 - Staniaszek-Kik, Monika A1 - Stevanovic-Dajic, Zora A1 - Stock, Marin A1 - Suchrow, Sigrid A1 - Sutcliffe, Laura M. E. A1 - Swacha, Grzegorz A1 - Sykes, Martin A1 - Szabo, Anna A1 - Talebi, Amir A1 - Tanase, Catalin A1 - Terzi, Massimo A1 - Tolgyesi, Csaba A1 - Torca, Marta A1 - Torok, Peter A1 - Tothmeresz, Bela A1 - Tsarevskaya, Nadezda A1 - Tsiripidis, Ioannis A1 - Tzonev, Rossen A1 - Ushimaru, Atushi A1 - Valko, Orsolya A1 - van der Maarel, Eddy A1 - Vanneste, Thomas A1 - Vashenyak, Iuliia A1 - Vassilev, Kiril A1 - Viciani, Daniele A1 - Villar, Luis A1 - Virtanen, Risto A1 - Kosic, Ivana Vitasovic A1 - Wang, Yun A1 - Weiser, Frank A1 - Went, Julia A1 - Wesche, Karsten A1 - White, Hannah A1 - Winkler, Manuela A1 - Zaniewski, Piotr T. A1 - Zhang, Hui A1 - Ziv, Yaron A1 - Znamenskiy, Sergey A1 - Biurrun, Idoia T1 - GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands JF - Phytocoenologia N2 - GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board. KW - biodiversity KW - European Vegetation Archive (EVA) KW - Eurasian Dry Grassland Group (EDGG) KW - grassland vegetation KW - GrassPlot KW - macroecology KW - multi-taxon KW - nested plot KW - scale-dependence KW - species-area relationship (SAR) KW - sPlot KW - vegetation-plot database Y1 - 2018 U6 - https://doi.org/10.1127/phyto/2018/0267 SN - 0340-269X VL - 48 IS - 3 SP - 331 EP - 347 PB - Cramer CY - Stuttgart ER -