TY - JOUR A1 - Pohanková, Eva A1 - Hlavinka, Petr A1 - Kersebaum, Kurt-Christian A1 - Rodríguez, Alfredo A1 - Balek, Jan A1 - Bednařík, Martin A1 - Dubrovský, Martin A1 - Gobin, Anne A1 - Hoogenboom, Gerrit A1 - Moriondo, Marco A1 - Nendel, Claas A1 - Olesen, Jørgen E. E. A1 - Rötter, Reimund Paul A1 - Ruiz-Ramos, Margarita A1 - Shelia, Vakhtang A1 - Stella, Tommaso A1 - Hoffmann, Munir Paul A1 - Takáč, Jozef A1 - Eitzinger, Josef A1 - Dibari, Camilla A1 - Ferrise, Roberto A1 - Bláhová, Monika A1 - Trnka, Miroslav T1 - Expected effects of climate change on the production and water use of crop rotation management reproduced by crop model ensemble for Czech Republic sites JF - European journal of agronomy N2 - Crop rotation, fertilization and residue management affect the water balance and crop production and can lead to different sensitivities to climate change. To assess the impacts of climate change on crop rotations (CRs), the crop model ensemble (APSIM,AQUACROP, CROPSYST, DAISY, DSSAT, HERMES, MONICA) was used. The yields and water balance of two CRs with the same set of crops (winter wheat, silage maize, spring barley and winter rape) in a continuous transient run from 1961 to 2080 were simulated. CR1 was without cover crops and without manure application. Straw after the harvest was exported from the fields. CR2 included cover crops, manure application and crop residue retention left on field. Simulations were performed using two soil types (Chernozem, Cambisol) within three sites in the Czech Republic, which represent temperature and precipitation gradients for crops in Central Europe. For the description of future climatic conditions, seven climate scenarios were used. Six of them had increasing CO & nbsp;concentrations according RCP 8.5, one had no CO2 increase in the future. The output of an ensemble expected higher productivity by 0.82 t/ha/year and 2.04 t/ha/year for yields and aboveground biomass in the future (2051-2080). However, if the direct effect of a CO2 increase is not considered, the average yields for lowlands will be lower. Compared to CR1, CR2 showed higher average yields of 1.26 t/ha/year for current climatic conditions and 1.41 t/ha/year for future climatic conditions. For the majority of climate change scenarios, the crop model ensemble agrees on the projected yield increase in C3 crops in the future for CR2 but not for CR1. Higher agreement for future yield increases was found for Chernozem, while for Cambisol, lower yields under dry climate scenarios are expected. For silage maize, changes in simulated yields depend on locality. If the same hybrid will be used in the future, then yield reductions should be expected within lower altitudes. The results indicate the potential for higher biomass production from cover crops, but CR2 is associated with almost 120 mm higher evapotranspiration compared to that of CR1 over a 5-year cycle for lowland stations in the future, which in the case of the rainfed agriculture could affect the long-term soil water balance. This could affect groundwater replenishment, especially for locations with fine textured soils, although the findings of this study highlight the potential for the soil water-holding capacity to buffer against the adverse weather conditions. KW - Yields KW - Evapotranspiration KW - Winter wheat KW - Silage maize KW - Spring barley KW - Winter oilseed rape Y1 - 2022 U6 - https://doi.org/10.1016/j.eja.2021.126446 SN - 1161-0301 SN - 1873-7331 VL - 134 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kothari, Kritika A1 - Battisti, Rafael A1 - Boote, Kenneth J. A1 - Archontoulis, Sotirios A1 - Confalone, Adriana A1 - Constantin, Julie A1 - Cuadra, Santiago A1 - Debaeke, Philippe A1 - Faye, Babacar A1 - Grant, Brian A1 - Hoogenboom, Gerrit A1 - Jing, Qi A1 - van der Laan, Michael A1 - Macena da Silva, Fernando Antonio A1 - Marin, Fabio R. A1 - Nehbandani, Alireza A1 - Nendel, Claas A1 - Purcell, Larry C. A1 - Qian, Budong A1 - Ruane, Alex C. A1 - Schoving, Celine A1 - Silva, Evandro H. F. M. A1 - Smith, Ward A1 - Soltani, Afshin A1 - Srivastava, Amit A1 - Vieira, Nilson A. A1 - Slone, Stacey A1 - Salmeron, Montserrat T1 - Are soybean models ready for climate change food impact assessments? JF - European journal of agronomy : the official journal of the European Society for Agronomy N2 - An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 degrees C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 degrees C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. KW - Agricultural Model Inter-comparison and Improvement Project (AgMIP); KW - Model ensemble KW - Model calibration KW - Temperature KW - Atmospheric CO2 KW - concentration KW - Legume model Y1 - 2022 U6 - https://doi.org/10.1016/j.eja.2022.126482 SN - 1161-0301 SN - 1873-7331 VL - 135 PB - Elsevier CY - Amsterdam ER -