TY - GEN A1 - Muschol, Waldemar A1 - Püschel, Gerhard Paul A1 - Hülsmann, Martina A1 - Jungermann, Kurt T1 - Eicosanoid-mediated increase in glucose and lactate output as well as decrease and redistribution of flow by complement-activated rat serum in perfused rat liver N2 - Rat serum, in which the complement sytem had been activated by incubation with zymosan, increased the glucose and lactate output, and reduced and redistributed the flow in isolated perfused rat liver clearly more than the control serum. Heat inactivation of the rat serum prior to zymosan incubation abolished this difference. Metabolic and hemodynamic alterations caused by the activated serum were dose dependent. They were almost completely inhibited by the cyclooxygenase inhibitor indomethacin and by the thromboxane antagonist 4-[2-(4-chlorobenzenesulfonamide)-ethyl]-benzene-acetica cid (BM 13505), but clearly less efficiently by the 5’-lipoxygenase inhibitor nordihydroguaiaretic acid and the leukotriene antagonist N-{3-[3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-propoxy]-4-chlorine-6-methyl-phenyl}-1H-tetrazole-5-carboxamide sodium salt (CGP 35949 B). Control serum and to a much larger extent complement-activated serum, caused an overflow of thromboxane B₂ and prostaglandin F₂α into the hepatic vein. It is concluded that the activated complement system of rat serum can influence liver metabolism and hemodynamics via release from nonparenchymal liver cells of thromboxane and prostaglandins, the latter of which can in turn act on the parenchymal cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - pape 116 Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45892 ER - TY - JOUR A1 - Pathe-Neuschaefer-Rube, Andrea A1 - Neuschaefer-Rube, Frank A1 - Genz, Lara A1 - Püschel, Gerhard Paul T1 - Botulinum Neurotoxin Dose-Dependently Inhibits Release of Neurosecretory Vesicle-Targeted Luciferase from Neuronal Cells JF - Alternatives to animal experimentation : ALTEX ; a journal for new paths in biomedical science N2 - Botulinum toxin is a bacterial toxin that inhibits neurotransmitter release from neurons and thereby causes a flaccid paralysis. It is used as drug to treat a number of serious ailments and, more frequently, for aesthetic medical interventions. Botulinum toxin for pharmacological applications is isolated from bacterial cultures. Due to partial denaturation of the protein, the specific activity of these preparations shows large variations. Because of its extreme potential toxicity, pharmacological preparations must be carefully tested for their activity. For the current gold standard, the mouse lethality assay, several hundred thousand mice are killed per year. Alternative methods have been developed that suffer from one or more of the following deficits: In vitro enzyme assays test only the activity of the catalytic subunit of the toxin. Enzymatic and cell based immunological assays are specific for just one of the different serotypes. The current study takes a completely different approach that overcomes these limitations: Neuronal cell lines were stably transfected with plasmids coding for luciferases of different species, which were N-terminally tagged with leader sequences that redirect the luciferase into neuro-secretory vesicles. From these vesicles, luciferases were released upon depolarization of the cells. The depolarization-dependent release was efficiently inhibited by botulinum toxin in a concentration range (1 to 100 pM) that is used in pharmacological preparations. The new assay might thus be an alternative to the mouse lethality assay and the immunological assays already in use. KW - Botulinum toxin KW - cell-based assay KW - mouse lethality assay Y1 - 2015 SN - 1868-596X SN - 1868-8551 VL - 32 IS - 4 SP - 297 EP - 306 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Haas, Gerald A1 - Langoth-Fehringer, Nina A1 - Püschel, Gerhard Paul T1 - Cell-Based Reporter Release Assay to Determine the Potency of Proteolytic Bacterial Neurotoxins JF - Toxins N2 - Despite the implementation of cell-based replacement methods, the mouse lethality assay is still frequently used to determine the activity of botulinum toxin (BoNT) for medical use. One explanation is that due to the use of neoepitope-specific antibodies to detect the cleaved BoNT substrate, the currently devised assays can detect only one specific serotype of the toxin. Recently, we developed a cell-based functional assay, in which BoNT activity is determined by inhibiting the release of a reporter enzyme that is liberated concomitantly with the neurotransmitter from neurosecretory vesicles. In theory, this assay should be suitable to detect the activity of any BoNT serotype. Consistent with this assumption, the current study shows that the stimulus-dependent release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) was inhibited by BoNT-A and-C. Furthermore, this was also inhibited by BoNT-B and tetanus toxin to a lesser extent and at higher concentrations. In order to provide support for the suitability of this technique in practical applications, a dose–response curve obtained with a pharmaceutical preparation of BoNT-A closely mirrored the activity determined in the mouse lethality assay. In summary, the newly established cell-based assay may represent a versatile and specific alternative to the mouse lethality assay and other currently established cell-based assays. KW - botulinum toxin KW - BoNT KW - tetanus toxin KW - RRR KW - replacement Y1 - 2018 U6 - https://doi.org/10.3390/toxins10090360 SN - 2072-6651 VL - 10 IS - 9 SP - 1 EP - 10 PB - Molecular Diversity Preservation International (MDPI) CY - Basel ER - TY - JOUR A1 - Schraplau, Anne A1 - Schewe, Bettina A1 - Neuschäfer-Rube, Frank A1 - Ringel, Sebastian A1 - Neuber, Corinna A1 - Kleuser, Burkhard A1 - Püschel, Gerhard Paul T1 - Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital JF - Toxicology N2 - Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. (C) 2014 Elsevier Ireland Ltd. All rights reserved. KW - Endocrine disruption KW - Xenobesity KW - Aryl-hydrocarbon receptor KW - Cyp2b1 KW - Thyroid hormone KW - UDP-glucuronosyltransferase Y1 - 2015 U6 - https://doi.org/10.1016/j.tox.2014.12.004 SN - 0300-483X VL - 328 SP - 21 EP - 28 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Püschel, Gerhard Paul T1 - Role of the ERC motif in the proximal part of the second intracellular loop and the C-terminal domain of the human prostaglandin F2alpha receptor (hFP-R) in G-protein coupling control N2 - The human FP-R (F2alpha prostaglandin receptor) is a Gq-coupled heptahelical ectoreceptor, which is of significant medical interest, since it is a potential target for the treatment of glaucoma and preterm labour. On agonist exposure, it mediates an increase in intracellular inositol phosphate formation. Little is known about the structures that govern the agonist-dependent receptor activation. In other prostanoid receptors, the C-terminal domain has been inferred in the control of agonist-dependent receptor activation. A DRY motif at the beginning of the second intracellular loop is highly conserved throughout the G-protein-coupled receptor family and appears to be crucial for controlling agonist-dependent receptor activation. It is replaced by an ERC motif in the FP-R and no evidence for the relevance of this motif in ligand-dependent activation of prostanoid receptors has been provided so far. The aim of the present study was to elucidate the potential role of the C-terminal domain and the ERC motif in agonist-controlled intracellular signalling in FP-R mutants generated by site-directed mutagenesis. It was found that substitution of the acidic Glu(132) in the ERC motif by a threonine residue led to full constitutive activation, whereas truncation of the receptor's C-terminal domain led to partial constitutive activation of all three intracellular signal pathways that had previously been shown to be activated by the FP-R, i.e. inositol trisphosphate formation, focal adhesion kinase activation and T-cell factor signalling. Inositol trisphosphate formation and focal adhesion kinase phosphorylation were further enhanced by ligand binding in cells expressing the truncation mutant but not the E132T (Glu132-->Thr) mutant. Thus C-terminal truncation appeared to result in a receptor with partial constitutive activation, whereas substitution of Glu132 by threonine apparently resulted in a receptor with full constitutive activity. Y1 - 2005 UR - http://www.biochemj.org/bj/388/0317/bj3880317.htm ER - TY - JOUR A1 - Böer, Ulrike A1 - Fennekohl, Alexandra A1 - Püschel, Gerhard Paul T1 - Sensitization by interleukin-6 of rat hepatocytes to tumor necrosis factor alpha-induced apoptosis N2 - BACKGROUND/AIMS: Tumor necrosis factor (TNF) elicits hepatocyte apoptosis in toxic liver injury and is also central in hepatocyte proliferation after partial hepatectomy. In both circumstances interleukin (IL)-6 levels are also elevated. In mouse liver IL-6 attenuated Fas receptor-mediated apoptosis indicating its interference with pro-apoptotic signal chains. It was, therefore, the aim to examine the modulation by IL-6 of TNFalpha-induced apoptosis in rat hepatocytes. METHODS: Primary rat hepatocytes were treated with IL-6 prior to induction of apoptosis with TNFalpha/ actinomycin D or anti-Fas antibody M-20. Apoptosis was detected by determination of caspase-3 activation and bisbenzimide staining of condensed nuclei. Expression of TNFalpha receptors was analyzed by semi-quantitative polymerase chain reaction and ligand binding studies with [125I]-TNFalpha. RESULTS: IL-6 treatment doubled TNFalpha/actinomycin D- induced caspase-3 activity and significantly enhanced chromatin condensation. By contrast IL-6 inhibited Fas-induced increase in caspase-3 activity by 45% and significantly reduced chromatin condensation. IL-6 increased the mRNA level of TNF-R1 1.35-fold and augmented cell surface binding of [125I]-TNFalpha 3-fold. The latter and TNFalpha-mediated caspase activation was attenuated by prostaglandin E(2). CONCLUSIONS: IL-6 - in contrast to its anti-apoptotic modulation of the Fas-induced pathway - exerted a pro-apoptotic effect on the TNFalpha/actinomycin D-induced apoptosis by increasing the number of TNF-R on hepatocytes. Y1 - 2003 UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12763364 ER - TY - JOUR A1 - Fennekohl, Alexandra A1 - Sugimoto, Yukihiko A1 - Segi, Eri A1 - Maruyama, Takayuki A1 - Ichikawa, Atsushi A1 - Püschel, Gerhard Paul T1 - Contribution of the two Gs-coupled PGE(2)-receptors EP2-receptor and EP4-receptor to the inhibition by PGE2 of the LPS-induced TNF alpha-information in Kupffer cells from EP2-or-EP4-receptor-dficient mice : pivotal role for the EP4- receptor in wild type Kupffer cells N2 - Background/Aims: Prostaglandin E(2) (PGE(2)) is known to inhibit the lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFalpha) formation in Kupffer cells via an increase in cAMP. Four receptor-subtypes have been cloned for PGE(2) so far. Two of them, the EP2-receptor and the EP4-receptor are linked to stimulatory Gs-proteins and could mediate the inhibition by PGE(2) of TNFalpha-formation.Methods: The significance of both receptors for PGE(2)- dependent inhibition of LPS-induced TNFalpha-formation was studied using Kupffer cells of mice in which either one of the two receptors had been eliminated by homologous recombination.Results: The mRNAs of both receptors were expressed in wild type mouse Kupffer cells. Exogenous PGE(2) inhibited TNFalpha-formation in Kupffer cells lacking either EP2-receptor or EP4-receptor to a similar extent as in control cells, however, 10-fold higher PGE(2) concentrations were needed for half maximal inhibition in cells lacking the EP4-receptor than in control or EP2-receptor- deficient cells. The response to endogenous PGE(2) was blunted in EP4-receptor-deficient mice only and especially after prolonged incubation. Conclusions: The data indicate, that PGE(2) can inhibit TNFalpha-formation via both the EP2- and the EP4-receptor and that, however, the EP4-receptor appears to be physiologically more relevant in Kupffer cells since it conferred a high affinity response to PGE(2). Y1 - 2002 ER - TY - JOUR A1 - Neuschäfer-Rube, Frank A1 - Hermosilla, Ricardo A1 - Kuna, Manuela A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Schulein, R. A1 - Püschel, Gerhard Paul T1 - A Ser/Thr cluster within the C-terminal domain of the rat prostaglandin receptor EP3 alpha is essential for agonist-induced phosphorylation, desensitization and internalization N2 - 1 Two isoforms of the rat prostaglandin E-2 receptor, rEP3 alpha-R and rEP3 beta-R, differ only in their C- terminal domain. To analyze the function of the rEP3-R C-terminal domain in agonist induced desensitization, a cluster of Ser/Thr residues in the C-terminal domain of the rEP3 alpha-R was mutated to Ala and both isoforms and the receptor mutant (rEP3 alpha-ST341-349A-R) were stably expressed in HEK293 cells. 2 All rEP3-R receptors showed a similar ligand- binding profile. They were functionally coupled to Gi and reduced forskolin-induced cAMP-formation. 3 Repeated exposure of cells expressing the rEP3 alpha-R isoform to PGE(2) reduced the agonist induced inhibition of forskolin-stimulated cAMP-formation by 50% and led to internalization of the receptor to intracellular endocytotic vesicles. By contrast, Gi- response as well as plasma membrane localization of the rEP3 beta-R and the rEP3 alpha-ST341-349A-R were not affected by prior agonist-stimulation. 4 Agonist-stimulation of HEK293-rEP3 alpha-R cells induced a time- and dose-dependent phosphorylation of the receptor most likely by G protein-coupled receptor kinases and not by protein kinase A or protein kinase C. By contrast, upon agonist-stimulation the rEP3 beta-R was not phosphorylated and the rEP3 alpha-ST341-349A-R was phosphorylated only weakly. 5 These results led to the hypothesis that agonist-induced desensitization of the rEP3 alpha-R isoform is mediated most likely by a GRK-dependent phosphorylation of Ser/Thr residues 341 - 349. Phosphorylation then initiates uncoupling of the receptor from Gi protein and receptor internalization Y1 - 2005 SN - 0007-1188 ER - TY - JOUR A1 - Neuschäfer-Rube, Frank A1 - Engemaier, Eva A1 - Koch, Sina A1 - Böer, Ulrike A1 - Püschel, Gerhard Paul T1 - Identification by site-directed mutagenesis of amino acids contributing to ligand-binding specificity or signal transduction properties of the human FP prostanoid receptor N2 - Prostanoid receptors belong to the class of heptahelical plasma membrane receptors. For the five prostanoids, eight receptor subtypes have been identified. They display an overall sequence similarity of roughly 30%. Based on sequence comparison, single amino acids in different subtypes of different species have previously been identified by site-directed mutagenesis or in hybrid receptors that appear to be essential for ligand binding or G-protein coupling. Based on this information, a series of mutants of the human FP receptor was generated and characterized in ligand- binding and second-messenger-formation studies. It was found that mutation of His-81 to Ala in transmembrane domain 2 and of Arg-291 to Leu in transmembrane domain 7, which are putative interaction partners for the prostanoid's carboxyl group, abolished ligand binding. Mutants in which Ser-263 in transmembrane domain 6 or Asp-300 in transmembrane domain 7 had been replaced by Ala or Gln, respectively, no longer discriminated between prostaglandins PGF(2alpha) and PGD(2). Thus distortion of the topology of transmembrane domains 6 and 7 appears to interfere with the cyclopentane ring selectivity of the receptor. PGF(2alpha)-induced inositol formation was strongly reduced in the mutant Asp-300Gln, inferring a role for this residue in agonist-induced G-protein activation. Y1 - 2003 UR - http://www.biochemj.org/bj/371/0443/bj3710443.htm ER - TY - JOUR A1 - Böer, Ulrike A1 - Neuschäfer-Rube, Frank A1 - Möller, Ulrike A1 - Püschel, Gerhard Paul T1 - Requirement of N-glycosylation of the prostaglandin E2 receptor EP3beta for correct sorting to the plasma membrane but not for correct folding N2 - Eight heptahelical receptors have been characterized for prostaglandin (PG) D(2), PGE(2), PGF(2alpha), prostacyclin and thromboxane A(2). They share a sequence identity of 40%. All of them have potential N-glycosylation sites. The current study analysed the role of the two N-glycosylation sites in the rat EP3beta-subtype PGE(2) receptor for protein folding and sorting. The N-glycosylation consensus sequences were eliminated by site-directed mutagenesis and receptors expressed in HEK-293 cells. Both potential N-glycosylation sites were used. Their joint elimination resulted in the synthesis of a receptor protein with full binding competence, biological activity and no reduction of affinity; however, the half-life of the non-glycosylated receptor was slightly reduced. Ligand binding to intact stably transfected cells and confocal laser microscopic immunocytochemistry showed that the glycosylated receptor was correctly inserted into the plasma membrane to a much larger extent than the non-glycosylated receptor, which tended to accumulate in the perinuclear zone of the endoplasmic reticulum. Inhibition of N-glycosylation with tunicamycin resulted in a similar perinuclear distribution of the wild-type receptor. Therefore, glycosylation of the EP3beta receptor seems not to be necessary for correct folding of the receptor protein but for the efficient transport of the receptor protein to the plasma membrane. This contrasts with a previous finding which described a reduction of the affinity for PGE(2) of the EP3alpha receptor by elimination of the distal glycosylation site when the receptor protein was expressed in insect cells. Y1 - 2000 ER -