TY - JOUR A1 - Henkel, Janin A1 - Coleman, Charles Dominic A1 - Schraplau, Anne A1 - Joehrens, Korinna A1 - Weiss, Thomas Siegfried A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Püschel, Gerhard Paul T1 - Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model JF - Scientific reports N2 - In a subset of patients, non-alcoholic fatty liver disease (NAFLD) is complicated by cell death and inflammation resulting in non-alcoholic steatohepatitis (NASH), which may progress to fibrosis and subsequent organ failure. Apart from cytokines, prostaglandins, in particular prostaglandin E-2 (PGE(2)), play a pivotal role during inflammatory processes. Expression of the key enzymes of PGE(2) synthesis, cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), was increased in human NASH livers in comparison to controls and correlated with the NASH activity score. Both enzymes were also induced in NASH-diet-fed wild-type mice, resulting in an increase in hepatic PGE(2) concentration that was completely abrogated in mPGES-1-deficient mice. PGE(2) is known to inhibit TNF-alpha synthesis in macrophages. A strong infiltration of monocyte-derived macrophages was observed in NASH-diet-fed mice, which was accompanied with an increase in hepatic TNF-alpha expression. Due to the impaired PGE(2) production, TNF-alpha expression increased much more in livers of mPGES-1-deficient mice or in the peritoneal macrophages of these mice. The increased levels of TNF-alpha resulted in an enhanced IL-1 beta production, primarily in hepatocytes, and augmented hepatocyte apoptosis. In conclusion, attenuation of PGE(2) production by mPGES-1 ablation enhanced the TNF-alpha-triggered inflammatory response and hepatocyte apoptosis in diet-induced NASH. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-34633-y SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Pathe-Neuschaefer-Rube, Andrea A1 - Neuschaefer-Rube, Frank A1 - Genz, Lara A1 - Püschel, Gerhard Paul T1 - Botulinum Neurotoxin Dose-Dependently Inhibits Release of Neurosecretory Vesicle-Targeted Luciferase from Neuronal Cells JF - Alternatives to animal experimentation : ALTEX ; a journal for new paths in biomedical science N2 - Botulinum toxin is a bacterial toxin that inhibits neurotransmitter release from neurons and thereby causes a flaccid paralysis. It is used as drug to treat a number of serious ailments and, more frequently, for aesthetic medical interventions. Botulinum toxin for pharmacological applications is isolated from bacterial cultures. Due to partial denaturation of the protein, the specific activity of these preparations shows large variations. Because of its extreme potential toxicity, pharmacological preparations must be carefully tested for their activity. For the current gold standard, the mouse lethality assay, several hundred thousand mice are killed per year. Alternative methods have been developed that suffer from one or more of the following deficits: In vitro enzyme assays test only the activity of the catalytic subunit of the toxin. Enzymatic and cell based immunological assays are specific for just one of the different serotypes. The current study takes a completely different approach that overcomes these limitations: Neuronal cell lines were stably transfected with plasmids coding for luciferases of different species, which were N-terminally tagged with leader sequences that redirect the luciferase into neuro-secretory vesicles. From these vesicles, luciferases were released upon depolarization of the cells. The depolarization-dependent release was efficiently inhibited by botulinum toxin in a concentration range (1 to 100 pM) that is used in pharmacological preparations. The new assay might thus be an alternative to the mouse lethality assay and the immunological assays already in use. KW - Botulinum toxin KW - cell-based assay KW - mouse lethality assay Y1 - 2015 SN - 1868-596X SN - 1868-8551 VL - 32 IS - 4 SP - 297 EP - 306 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Püschel, Gerhard Paul T1 - Cell-based reporter release assay to determine the activity of calcium-dependent neurotoxins and neuroactive pharmaceuticals JF - Toxins / Molecular Diversity Preservation International (MDPI) N2 - The suitability of a newly developed cell-based functional assay was tested for the detection of the activity of a range of neurotoxins and neuroactive pharmaceuticals which act by stimulation or inhibition of calcium-dependent neurotransmitter release. In this functional assay, a reporter enzyme is released concomitantly with the neurotransmitter from neurosecretory vesicles. The current study showed that the release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) can be stimulated by a carbachol-mediated activation of the Gq-coupled muscarinic-acetylcholine receptor and by the Ca2+-channel forming spider toxin α-latrotoxin. Carbachol-stimulated luciferase release was completely inhibited by the muscarinic acetylcholine receptor antagonist atropine and α-latrotoxin-mediated release by the Ca2+-chelator EGTA, demonstrating the specificity of luciferase-release stimulation. SIMA-hPOMC1-26-GLuc cells express mainly L- and N-type and to a lesser extent T-type VGCC on the mRNA and protein level. In accordance with the expression profile a depolarization-stimulated luciferase release by a high K+-buffer was effectively and dose-dependently inhibited by L-type VGCC inhibitors and to a lesser extent by N-type and T-type inhibitors. P/Q- and R-type inhibitors did not affect the K+-stimulated luciferase release. In summary, the newly established cell-based assay may represent a versatile tool to analyze the biological efficiency of a range of neurotoxins and neuroactive pharmaceuticals which mediate their activity by the modulation of calcium-dependent neurotransmitter release. KW - cell-based assay KW - neurotoxins KW - muscarinic acetylcholine receptor KW - voltage-dependent calcium channels KW - VGCC Y1 - 2021 U6 - https://doi.org/10.3390/toxins13040247 SN - 2072-6651 VL - 13 IS - 4 PB - MDPI CY - Basel ER - TY - GEN A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Püschel, Gerhard Paul T1 - Cell-based reporter release assay to determine the activity of calcium-dependent neurotoxins and neuroactive pharmaceuticals T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The suitability of a newly developed cell-based functional assay was tested for the detection of the activity of a range of neurotoxins and neuroactive pharmaceuticals which act by stimulation or inhibition of calcium-dependent neurotransmitter release. In this functional assay, a reporter enzyme is released concomitantly with the neurotransmitter from neurosecretory vesicles. The current study showed that the release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) can be stimulated by a carbachol-mediated activation of the Gq-coupled muscarinic-acetylcholine receptor and by the Ca2+-channel forming spider toxin α-latrotoxin. Carbachol-stimulated luciferase release was completely inhibited by the muscarinic acetylcholine receptor antagonist atropine and α-latrotoxin-mediated release by the Ca2+-chelator EGTA, demonstrating the specificity of luciferase-release stimulation. SIMA-hPOMC1-26-GLuc cells express mainly L- and N-type and to a lesser extent T-type VGCC on the mRNA and protein level. In accordance with the expression profile a depolarization-stimulated luciferase release by a high K+-buffer was effectively and dose-dependently inhibited by L-type VGCC inhibitors and to a lesser extent by N-type and T-type inhibitors. P/Q- and R-type inhibitors did not affect the K+-stimulated luciferase release. In summary, the newly established cell-based assay may represent a versatile tool to analyze the biological efficiency of a range of neurotoxins and neuroactive pharmaceuticals which mediate their activity by the modulation of calcium-dependent neurotransmitter release. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1139 KW - cell-based assay KW - neurotoxins KW - muscarinic acetylcholine receptor KW - voltage-dependent calcium channels KW - VGCC Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-503225 SN - 1866-8372 IS - 1139 ER - TY - GEN A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Haas, Gerald A1 - Langoth-Fehringer, Nina A1 - Püschel, Gerhard Paul T1 - Cell-Based Reporter Release Assay to Determine the Potency of Proteolytic Bacterial Neurotoxins T2 - Toxins N2 - Despite the implementation of cell-based replacement methods, the mouse lethality assay is still frequently used to determine the activity of botulinum toxin (BoNT) for medical use. One explanation is that due to the use of neoepitope-specific antibodies to detect the cleaved BoNT substrate, the currently devised assays can detect only one specific serotype of the toxin. Recently, we developed a cell-based functional assay, in which BoNT activity is determined by inhibiting the release of a reporter enzyme that is liberated concomitantly with the neurotransmitter from neurosecretory vesicles. In theory, this assay should be suitable to detect the activity of any BoNT serotype. Consistent with this assumption, the current study shows that the stimulus-dependent release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) was inhibited by BoNT-A and-C. Furthermore, this was also inhibited by BoNT-B and tetanus toxin to a lesser extent and at higher concentrations. In order to provide support for the suitability of this technique in practical applications, a dose–response curve obtained with a pharmaceutical preparation of BoNT-A closely mirrored the activity determined in the mouse lethality assay. In summary, the newly established cell-based assay may represent a versatile and specific alternative to the mouse lethality assay and other currently established cell-based assays. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 473 KW - botulinum toxin KW - BoNT KW - tetanus toxin KW - RRR KW - replacement Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418141 ER - TY - JOUR A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Haas, Gerald A1 - Langoth-Fehringer, Nina A1 - Püschel, Gerhard Paul T1 - Cell-Based Reporter Release Assay to Determine the Potency of Proteolytic Bacterial Neurotoxins JF - Toxins N2 - Despite the implementation of cell-based replacement methods, the mouse lethality assay is still frequently used to determine the activity of botulinum toxin (BoNT) for medical use. One explanation is that due to the use of neoepitope-specific antibodies to detect the cleaved BoNT substrate, the currently devised assays can detect only one specific serotype of the toxin. Recently, we developed a cell-based functional assay, in which BoNT activity is determined by inhibiting the release of a reporter enzyme that is liberated concomitantly with the neurotransmitter from neurosecretory vesicles. In theory, this assay should be suitable to detect the activity of any BoNT serotype. Consistent with this assumption, the current study shows that the stimulus-dependent release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) was inhibited by BoNT-A and-C. Furthermore, this was also inhibited by BoNT-B and tetanus toxin to a lesser extent and at higher concentrations. In order to provide support for the suitability of this technique in practical applications, a dose–response curve obtained with a pharmaceutical preparation of BoNT-A closely mirrored the activity determined in the mouse lethality assay. In summary, the newly established cell-based assay may represent a versatile and specific alternative to the mouse lethality assay and other currently established cell-based assays. KW - botulinum toxin KW - BoNT KW - tetanus toxin KW - RRR KW - replacement Y1 - 2018 U6 - https://doi.org/10.3390/toxins10090360 SN - 2072-6651 VL - 10 IS - 9 SP - 1 EP - 10 PB - Molecular Diversity Preservation International (MDPI) CY - Basel ER - TY - GEN A1 - Neuschäfer-Rube, Frank A1 - Püschel, Gerhard Paul A1 - Jungermann, Kurt T1 - Characterization of prostaglandin-F₂α-binding sites on rat hepatocyte plasma membranes N2 - Prostaglandin (PG)F₂α has previously been shown to increase glucose output from perfused livers and isolated hepatocytes, where it stimulated glycogen phosphorylase via an inositol-trisphosphatedependent signal pathway. In this study, PGF₂α binding sites on hepatocyte plasma membranes, that might represent the putative receptor, were characterized. Binding studies could not be performed with intact hepatocytes, because PGF₂α accumulated within the cells even at 4°C. The intracellular accumulation was an order of magnitude higher than binding to plasma membranes. Purified hepatocyte plasma membranes had a high-affinity/low-capacity and a low-affinity/highcapacity binding'site for PGF₂α. The respective binding constants for the high-affinity site were Kd = 3 nM and Bmax = 6 fmol/mg membrane protein, and for the low-affinity site Kd = 426 nM and Bmax = 245 fmol/mg membrane protein. Specific PGF₂α binding to the low-affinity site, but not to the high-affinity site, could be enhanced most potently by GTP[γS] followed by GDP[ϐS] and GTP, but not by ATP[γS] or GMP. PGF₂α competed most potently with [³H]PGF₂α for specific binding to hepatocyte plasma membranes, followed by PGD₂ and PGE₂. Since the low-affinity PGF₂α-binding site had a Kd in the concentration range in which PG had previously been shown to be half-maximally active, and since this binding site showed a sensitivity to GTP, it is concluded that it might represent the receptor involved in the PGF₂α signal chain in hepatocytes. A biological function of the high-affinity site is currently not known. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 113 Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45863 ER - TY - JOUR A1 - Fennekohl, Alexandra A1 - Sugimoto, Yukihiko A1 - Segi, Eri A1 - Maruyama, Takayuki A1 - Ichikawa, Atsushi A1 - Püschel, Gerhard Paul T1 - Contribution of the two Gs-coupled PGE(2)-receptors EP2-receptor and EP4-receptor to the inhibition by PGE2 of the LPS-induced TNF alpha-information in Kupffer cells from EP2-or-EP4-receptor-dficient mice : pivotal role for the EP4- receptor in wild type Kupffer cells N2 - Background/Aims: Prostaglandin E(2) (PGE(2)) is known to inhibit the lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFalpha) formation in Kupffer cells via an increase in cAMP. Four receptor-subtypes have been cloned for PGE(2) so far. Two of them, the EP2-receptor and the EP4-receptor are linked to stimulatory Gs-proteins and could mediate the inhibition by PGE(2) of TNFalpha-formation.Methods: The significance of both receptors for PGE(2)- dependent inhibition of LPS-induced TNFalpha-formation was studied using Kupffer cells of mice in which either one of the two receptors had been eliminated by homologous recombination.Results: The mRNAs of both receptors were expressed in wild type mouse Kupffer cells. Exogenous PGE(2) inhibited TNFalpha-formation in Kupffer cells lacking either EP2-receptor or EP4-receptor to a similar extent as in control cells, however, 10-fold higher PGE(2) concentrations were needed for half maximal inhibition in cells lacking the EP4-receptor than in control or EP2-receptor- deficient cells. The response to endogenous PGE(2) was blunted in EP4-receptor-deficient mice only and especially after prolonged incubation. Conclusions: The data indicate, that PGE(2) can inhibit TNFalpha-formation via both the EP2- and the EP4-receptor and that, however, the EP4-receptor appears to be physiologically more relevant in Kupffer cells since it conferred a high affinity response to PGE(2). Y1 - 2002 ER - TY - JOUR A1 - Püschel, Gerhard Paul T1 - Control of hepatocyte metabolism by sympathetic and parasympathetic hepatic nerves N2 - More than any other organ, the liver contributes to maintaining metabolic equilibrium of the body, most importantly of glucose homeostasis. It can store or release large quantities of glucose according to changing demands. This homeostasis is controlled by circulating hormones and direct innervation of the liver by autonomous hepatic nerves. Sympathetic hepatic nerves can increase hepatic glucose output; they appear, however, to contribute little to the stimulation of hepatic glucose output under physiological conditions. Parasympathetic hepatic nerves potentiate the insulin-dependent hepatic glucose extraction when a portal glucose sensor detects prandial glucose delivery from the gut. In addition, they might coordinate the hepatic and extrahepatic glucose utilization to prevent hypoglycemia and, at the same time, warrant efficient disposal of excess glucose. Y1 - 2004 UR - http://www3.interscience.wiley.com/cgi-bin/abstract/109596173/ABSTRACT ER - TY - JOUR A1 - Bishop, Christopher Allen A1 - Machate, Tina A1 - Henning, Thorsten A1 - Henkel-Oberländer, Janin A1 - Püschel, Gerhard A1 - Weber, Daniela A1 - Grune, Tilman A1 - Klaus, Susanne A1 - Weitkunat, Karolin T1 - Detrimental effects of branched-chain amino acids in glucose tolerance can be attributed to valine induced glucotoxicity in skeletal muscle JF - Nutrition & Diabetes N2 - Objective: Current data regarding the roles of branched-chain amino acids (BCAA) in metabolic health are rather conflicting, as positive and negative effects have been attributed to their intake. Methods: To address this, individual effects of leucine and valine were elucidated in vivo (C57BL/6JRj mice) with a detailed phenotyping of these supplementations in high-fat (HF) diets and further characterization with in vitro approaches (C2C12 myocytes). Results: Here, we demonstrate that under HF conditions, leucine mediates beneficial effects on adiposity and insulin sensitivity, in part due to increasing energy expenditure-likely contributing partially to the beneficial effects of a higher milk protein intake. On the other hand, valine feeding leads to a worsening of HF-induced health impairments, specifically reducing glucose tolerance/ insulin sensitivity. These negative effects are driven by an accumulation of the valine-derived metabolite 3-hydroxyisobutyrate (3HIB). Higher plasma 3-HIB levels increase basal skeletal muscle glucose uptake which drives glucotoxicity and impairs myocyte insulin signaling. Conclusion: These data demonstrate the detrimental role of valine in an HF context and elucidate additional targetable pathways in the etiology of BCAA-induced obesity and insulin resistance. Y1 - 2022 U6 - https://doi.org/10.1038/s41387-022-00200-8 SN - 2044-4052 VL - 12 IS - 1 PB - Nature Publishing Group CY - London ER -