TY - JOUR A1 - Henkel, Janin A1 - Frede, Katja A1 - Schanze, Nancy A1 - Vogel, Heike A1 - Schürmann, Annette A1 - Spruß, Astrid A1 - Bergheim, Ina A1 - Püschel, Gerhard Paul T1 - Stimulation of fat accumulation in hepatocytes by PGE(2)-dependent repression of hepatic lipolysis, beta-oxidation and VLDL-synthesis JF - Laboratory investigation : the basic and translational pathology research journal ; an official journal of the United States and Canadian Academy of Pathology N2 - Hepatic steatosis is recognized as hepatic presentation of the metabolic syndrome. Hyperinsulinaemia, which shifts fatty acid oxidation to de novo lipogenesis and lipid storage in the liver, appears to be a principal elicitor particularly in the early stages of disease development. The impact of PGE(2), which has previously been shown to attenuate insulin signaling and hence might reduce insulin-dependent lipid accumulation, on insulin-induced steatosis of hepatocytes was studied. The PGE(2)-generating capacity was enhanced in various obese mouse models by the induction of cyclooxygenase 2 and microsomal prostaglandin E-synthases (mPGES1, mPGES2). PGE(2) attenuated the insulin-dependent induction of SREBP-1c and its target genes glucokinase and fatty acid synthase. Nevertheless, PGE(2) enhanced incorporation of glucose into hepatic triglycerides synergistically with insulin. This was most likely due to a combination of a PGE(2)-dependent repression of (1) the key lipolytic enzyme adipose triglyceride lipase, (2) carnitine-palmitoyltransferase 1, a key regulator of mitochondrial beta-oxidation, and (3) microsomal transfer protein, as well as (4) apolipoprotein B, key components of the VLDL synthesis. Repression of PGC1 alpha, a common upstream regulator of these genes, was identified as a possible cause. In support of this hypothesis, overexpression of PGC1 alpha completely blunted the PGE(2)-dependent fat accumulation. PGE(2) enhanced lipid accumulation synergistically with insulin, despite attenuating insulin signaling and might thus contribute to the development of hepatic steatosis. Induction of enzymes involved in PGE(2) synthesis in in vivo models of obesity imply a potential role of prostanoids in the development of NAFLD and NASH. Laboratory Investigation (2012) 92, 1597-1606; doi:10.1038/labinvest.2012.128; published online 10 September 2012 KW - cyclooxygenase KW - hepatic steatosis KW - mPGES KW - NAFLD KW - NASH KW - type 2 diabetes (T2DM) KW - PGC1 alpha Y1 - 2012 U6 - https://doi.org/10.1038/labinvest.2012.128 SN - 0023-6837 VL - 92 IS - 11 SP - 1597 EP - 1606 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Hesse, Deike A1 - Jaschke, Alexander A1 - Kanzleiter, Timo A1 - Witte, Nicole A1 - Augustin, Robert A1 - Hommel, Angela A1 - Püschel, Gerhard Paul A1 - Petzke, Klaus-Jürgen A1 - Joost, Hans-Georg A1 - Schupp, Michael A1 - Schürmann, Annette T1 - GTPase ARFRP1 is essential for normal hepatic glycogen storage and insulin-like growth factor 1 secretion JF - Molecular and cellular biology N2 - The GTPase ADP-ribosylation factor-related protein 1 (ARFRP1) is located at the trans-Golgi compartment and regulates the recruitment of Arf-like 1 (ARL1) and its effector golgin-245 to this compartment. Here, we show that liver-specific knockout of Arfrp1 in the mouse (Arfrp1(liv-/-)) resulted in early growth retardation, which was associated with reduced hepatic insulin-like growth factor 1 (IGF1) secretion. Accordingly, suppression of Arfrp1 in primary hepatocytes resulted in a significant reduction of IGF1 release. However, the hepatic secretion of IGF-binding protein 2 (IGFBP2) was not affected in the absence of ARFRP1. In addition, Arfrp1(liv-/-) mice exhibited decreased glucose transport into the liver, leading to a 50% reduction of glycogen stores as well as a marked retardation of glycogen storage after fasting and refeeding. These abnormalities in glucose metabolism were attributable to reduced protein levels and intracellular retention of the glucose transporter GLUT2 in Arfrp1(liv-/-) livers. As a consequence of impaired glucose uptake into the liver, the expression levels of carbohydrate response element binding protein (ChREBP), a transcription factor regulated by glucose concentration, and its target genes (glucokinase and pyruvate kinase) were markedly reduced. Our data indicate that ARFRP1 in the liver is involved in the regulation of IGF1 secretion and GLUT2 sorting and is thereby essential for normal growth and glycogen storage. Y1 - 2012 U6 - https://doi.org/10.1128/MCB.00522-12 SN - 0270-7306 VL - 32 IS - 21 SP - 4363 EP - 4374 PB - American Society for Microbiology CY - Washington ER - TY - GEN A1 - Henkel, Janin A1 - Coleman Mac Gregor of Inneregny, Charles Dominic A1 - Schraplau, Anne A1 - Jöhrens, Korinna A1 - Weiss, Thomas Siegfried A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Püschel, Gerhard Paul T1 - Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In a subset of patients, non-alcoholic fatty liver disease (NAFLD) is complicated by cell death and inflammation resulting in non-alcoholic steatohepatitis (NASH), which may progress to fibrosis and subsequent organ failure. Apart from cytokines, prostaglandins, in particular prostaglandin E-2 (PGE(2)), play a pivotal role during inflammatory processes. Expression of the key enzymes of PGE(2) synthesis, cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), was increased in human NASH livers in comparison to controls and correlated with the NASH activity score. Both enzymes were also induced in NASH-diet-fed wild-type mice, resulting in an increase in hepatic PGE(2) concentration that was completely abrogated in mPGES-1-deficient mice. PGE(2) is known to inhibit TNF-alpha synthesis in macrophages. A strong infiltration of monocyte-derived macrophages was observed in NASH-diet-fed mice, which was accompanied with an increase in hepatic TNF-alpha expression. Due to the impaired PGE(2) production, TNF-alpha expression increased much more in livers of mPGES-1-deficient mice or in the peritoneal macrophages of these mice. The increased levels of TNF-alpha resulted in an enhanced IL-1 beta production, primarily in hepatocytes, and augmented hepatocyte apoptosis. In conclusion, attenuation of PGE(2) production by mPGES-1 ablation enhanced the TNF-alpha-triggered inflammatory response and hepatocyte apoptosis in diet-induced NASH. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 483 KW - suppress VLDL secretion KW - mice lacking KW - nonalcoholic steatohepatthis KW - insulin-resistance KW - rat hepatocytes KW - kupffer cells KW - E-2 KW - disease KW - expression KW - accumulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-420879 SN - 1866-8372 IS - 483 ER - TY - JOUR A1 - Henkel, Janin A1 - Coleman Mac Gregor of Inneregny, Charles Dominic A1 - Schraplau, Anne A1 - Jöhrens, Korinna A1 - Weiss, Thomas Siegfried A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Püschel, Gerhard Paul T1 - Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model JF - Scientific Reports N2 - In a subset of patients, non-alcoholic fatty liver disease (NAFLD) is complicated by cell death and inflammation resulting in non-alcoholic steatohepatitis (NASH), which may progress to fibrosis and subsequent organ failure. Apart from cytokines, prostaglandins, in particular prostaglandin E-2 (PGE(2)), play a pivotal role during inflammatory processes. Expression of the key enzymes of PGE(2) synthesis, cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), was increased in human NASH livers in comparison to controls and correlated with the NASH activity score. Both enzymes were also induced in NASH-diet-fed wild-type mice, resulting in an increase in hepatic PGE(2) concentration that was completely abrogated in mPGES-1-deficient mice. PGE(2) is known to inhibit TNF-alpha synthesis in macrophages. A strong infiltration of monocyte-derived macrophages was observed in NASH-diet-fed mice, which was accompanied with an increase in hepatic TNF-alpha expression. Due to the impaired PGE(2) production, TNF-alpha expression increased much more in livers of mPGES-1-deficient mice or in the peritoneal macrophages of these mice. The increased levels of TNF-alpha resulted in an enhanced IL-1 beta production, primarily in hepatocytes, and augmented hepatocyte apoptosis. In conclusion, attenuation of PGE(2) production by mPGES-1 ablation enhanced the TNF-alpha-triggered inflammatory response and hepatocyte apoptosis in diet-induced NASH. KW - suppress VLDL secretion KW - mice lacking KW - nonalcoholic steatohepatthis KW - insulin-resistance KW - rat hepatocytes KW - kupffer cells KW - E-2 KW - disease KW - expression KW - accumulation Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-34633-y SN - 2045-2322 IS - 8 SP - 1 EP - 11 PB - Nature Research CY - London ER - TY - JOUR A1 - Henkel, Janin A1 - Coleman, Charles Dominic A1 - Schraplau, Anne A1 - Jöhrens, Korinna A1 - Weber, Daniela A1 - Castro, Jose Pedro A1 - Hugo, Martin A1 - Schulz, Tim Julius A1 - Krämer, Stephanie A1 - Schürmann, Annette A1 - Püschel, Gerhard Paul T1 - Induction of Steatohepatitis (NASH) with Insulin Resistance in Wild-type B6 Mice by a Western-type Diet Containing Soybean Oil and Cholesterol JF - Molecular medicine N2 - Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g., high-fat diets) or overweight and insulin resistance (e.g., methionine-choline-deficient diets), or they are based on monogenetic defects (e.g., ob/ob mice). In the current study, a Western-type diet containing soybean oil with high n-6-PUFA and 0.75% cholesterol (SOD + Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice, which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast, a soybean oil-containing Western-type diet without cholesterol (SOD) induced only mild steatosis but not hepatic inflammation, fibrosis, weight gain or insulin resistance. Another high-fat diet, mainly consisting of lard and supplemented with fructose in drinking water (LAD + Fru), resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD + Cho, but livers were devoid of inflammation and fibrosis. Although both LAD + Fru-and SOD + Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD + Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. In summary, dietary cholesterol in the SOD + Cho diet may trigger hepatic inflammation and fibrosis. SOD + Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH. KW - Nonalcoholic Steatohepatitis (NASH) KW - Typical Western Diet KW - Nonalcoholic Fatty Liver Disease (NAFLD) KW - Dietary Cholesterol KW - Kupffer Cells Y1 - 2017 U6 - https://doi.org/10.2119/molmed.2016.00203 SN - 1076-1551 SN - 1528-3658 VL - 23 SP - 70 EP - 82 PB - Feinstein Inst. for Medical Research CY - Manhasset ER - TY - JOUR A1 - Henkel, Janin A1 - Coleman, Charles Dominic A1 - Schraplau, Anne A1 - Joehrens, Korinna A1 - Weiss, Thomas Siegfried A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Püschel, Gerhard Paul T1 - Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model JF - Scientific reports N2 - In a subset of patients, non-alcoholic fatty liver disease (NAFLD) is complicated by cell death and inflammation resulting in non-alcoholic steatohepatitis (NASH), which may progress to fibrosis and subsequent organ failure. Apart from cytokines, prostaglandins, in particular prostaglandin E-2 (PGE(2)), play a pivotal role during inflammatory processes. Expression of the key enzymes of PGE(2) synthesis, cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), was increased in human NASH livers in comparison to controls and correlated with the NASH activity score. Both enzymes were also induced in NASH-diet-fed wild-type mice, resulting in an increase in hepatic PGE(2) concentration that was completely abrogated in mPGES-1-deficient mice. PGE(2) is known to inhibit TNF-alpha synthesis in macrophages. A strong infiltration of monocyte-derived macrophages was observed in NASH-diet-fed mice, which was accompanied with an increase in hepatic TNF-alpha expression. Due to the impaired PGE(2) production, TNF-alpha expression increased much more in livers of mPGES-1-deficient mice or in the peritoneal macrophages of these mice. The increased levels of TNF-alpha resulted in an enhanced IL-1 beta production, primarily in hepatocytes, and augmented hepatocyte apoptosis. In conclusion, attenuation of PGE(2) production by mPGES-1 ablation enhanced the TNF-alpha-triggered inflammatory response and hepatocyte apoptosis in diet-induced NASH. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-34633-y SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER -