TY - JOUR A1 - Claussen, M. A1 - Brovkin, Victor A1 - Calov, R. A1 - Ganopolski, A. A1 - Kubatzki, C. T1 - Did humankind prevent a Holocene glaciation? N2 - Recently, W.F. Ruddiman (2003, Climatic Change, Vol. 61, pp. 261-293) suggested that the anthropocene, the geological epoch of significant anthropospheric interference with the natural Earth system, has started much earlier than previously thought (P. I. Crutzen and E. F. Stoermer, 2000, IGBP Newsletter, Vol. 429, pp. 623-628). Ruddiman proposed that due to human land use, atmospheric concentrations of CO2 and CH4 began to deviate from their natural declining trends some 8000 and 5000 years ago, respectively. Furthermore, Ruddiman concluded that greenhouse gas concentrations grew anomalously thereby preventing natural large-scale glaciation of northern North America that should have occurred some 4000-5000 years ago without human interference. Here we would like to comment on (a) natural changes in atmospheric CO2 concentration during the Holocene and (b) on the possibility of a Holocene glacial inception. We substantiate our comments by modelling results which suggest that the last three interglacials are not a proper analogue for Holocene climate variations. In particular, we show that our model does not yield a glacial inception during the last several thousand years even if a declining trend in atmospheric CO2 was assumed Y1 - 2005 SN - 0165-0009 ER - TY - JOUR A1 - Ganopolski, A. A1 - Winkelmann, Ricarda A1 - Schellnhuber, Hans Joachim T1 - Critical insolation-CO2 relation for diagnosing past and future glacial inception JF - Nature : the international weekly journal of science N2 - The past rapid growth of Northern Hemisphere continental ice sheets, which terminated warm and stable climate periods, is generally attributed to reduced summer insolation in boreal latitudes(1-3). Yet such summer insolation is near to its minimum at present(4), and there are no signs of a new ice age(5). This challenges our understanding of the mechanisms driving glacial cycles and our ability to predict the next glacial inception(6). Here we propose a critical functional relationship between boreal summer insolation and global carbon dioxide (CO2) concentration, which explains the beginning of the past eight glacial cycles and might anticipate future periods of glacial inception. Using an ensemble of simulations generated by an Earth system model of intermediate complexity constrained by palaeoclimatic data, we suggest that glacial inception was narrowly missed before the beginning of the Industrial Revolution. The missed inception can be accounted for by the combined effect of relatively high late-Holocene CO2 concentrations and the low orbital eccentricity of the Earth(7). Additionally, our analysis suggests that even in the absence of human perturbations no substantial build-up of ice sheets would occur within the next several thousand years and that the current interglacial would probably last for another 50,000 years. However, moderate anthropogenic cumulative CO2 emissions of 1,000 to 1,500 gigatonnes of carbon will postpone the next glacial inception by at least 100,000 years(8,9). Our simulations demonstrate that under natural conditions alone the Earth system would be expected to remain in the present delicately balanced interglacial climate state, steering clear of both large-scale glaciation of the Northern Hemisphere and its complete deglaciation, for an unusually long time. Y1 - 2016 U6 - https://doi.org/10.1038/nature16494 SN - 0028-0836 SN - 1476-4687 VL - 529 SP - 200 EP - U159 PB - Nature Publ. Group CY - London ER -