TY - JOUR A1 - Tiegs, Scott D. A1 - Costello, David M. A1 - Isken, Mark W. A1 - Woodward, Guy A1 - McIntyre, Peter B. A1 - Gessner, Mark O. A1 - Chauvet, Eric A1 - Griffiths, Natalie A. A1 - Flecker, Alex S. A1 - Acuna, Vicenc A1 - Albarino, Ricardo A1 - Allen, Daniel C. A1 - Alonso, Cecilia A1 - Andino, Patricio A1 - Arango, Clay A1 - Aroviita, Jukka A1 - Barbosa, Marcus V. M. A1 - Barmuta, Leon A. A1 - Baxter, Colden V. A1 - Bell, Thomas D. C. A1 - Bellinger, Brent A1 - Boyero, Luz A1 - Brown, Lee E. A1 - Bruder, Andreas A1 - Bruesewitz, Denise A. A1 - Burdon, Francis J. A1 - Callisto, Marcos A1 - Canhoto, Cristina A1 - Capps, Krista A. A1 - Castillo, Maria M. A1 - Clapcott, Joanne A1 - Colas, Fanny A1 - Colon-Gaud, Checo A1 - Cornut, Julien A1 - Crespo-Perez, Veronica A1 - Cross, Wyatt F. A1 - Culp, Joseph M. A1 - Danger, Michael A1 - Dangles, Olivier A1 - de Eyto, Elvira A1 - Derry, Alison M. A1 - Diaz Villanueva, Veronica A1 - Douglas, Michael M. A1 - Elosegi, Arturo A1 - Encalada, Andrea C. A1 - Entrekin, Sally A1 - Espinosa, Rodrigo A1 - Ethaiya, Diana A1 - Ferreira, Veronica A1 - Ferriol, Carmen A1 - Flanagan, Kyla M. A1 - Fleituch, Tadeusz A1 - Shah, Jennifer J. Follstad A1 - Frainer, Andre A1 - Friberg, Nikolai A1 - Frost, Paul C. A1 - Garcia, Erica A. A1 - Lago, Liliana Garcia A1 - Garcia Soto, Pavel Ernesto A1 - Ghate, Sudeep A1 - Giling, Darren P. A1 - Gilmer, Alan A1 - Goncalves, Jose Francisco A1 - Gonzales, Rosario Karina A1 - Graca, Manuel A. S. A1 - Grace, Mike A1 - Grossart, Hans-Peter A1 - Guerold, Francois A1 - Gulis, Vlad A1 - Hepp, Luiz U. A1 - Higgins, Scott A1 - Hishi, Takuo A1 - Huddart, Joseph A1 - Hudson, John A1 - Imberger, Samantha A1 - Iniguez-Armijos, Carlos A1 - Iwata, Tomoya A1 - Janetski, David J. A1 - Jennings, Eleanor A1 - Kirkwood, Andrea E. A1 - Koning, Aaron A. A1 - Kosten, Sarian A1 - Kuehn, Kevin A. A1 - Laudon, Hjalmar A1 - Leavitt, Peter R. A1 - Lemes da Silva, Aurea L. A1 - Leroux, Shawn J. A1 - Leroy, Carri J. A1 - Lisi, Peter J. A1 - MacKenzie, Richard A1 - Marcarelli, Amy M. A1 - Masese, Frank O. A1 - Mckie, Brendan G. A1 - Oliveira Medeiros, Adriana A1 - Meissner, Kristian A1 - Milisa, Marko A1 - Mishra, Shailendra A1 - Miyake, Yo A1 - Moerke, Ashley A1 - Mombrikotb, Shorok A1 - Mooney, Rob A1 - Moulton, Tim A1 - Muotka, Timo A1 - Negishi, Junjiro N. A1 - Neres-Lima, Vinicius A1 - Nieminen, Mika L. A1 - Nimptsch, Jorge A1 - Ondruch, Jakub A1 - Paavola, Riku A1 - Pardo, Isabel A1 - Patrick, Christopher J. A1 - Peeters, Edwin T. H. M. A1 - Pozo, Jesus A1 - Pringle, Catherine A1 - Prussian, Aaron A1 - Quenta, Estefania A1 - Quesada, Antonio A1 - Reid, Brian A1 - Richardson, John S. A1 - Rigosi, Anna A1 - Rincon, Jose A1 - Risnoveanu, Geta A1 - Robinson, Christopher T. A1 - Rodriguez-Gallego, Lorena A1 - Royer, Todd V. A1 - Rusak, James A. A1 - Santamans, Anna C. A1 - Selmeczy, Geza B. A1 - Simiyu, Gelas A1 - Skuja, Agnija A1 - Smykla, Jerzy A1 - Sridhar, Kandikere R. A1 - Sponseller, Ryan A1 - Stoler, Aaron A1 - Swan, Christopher M. A1 - Szlag, David A1 - Teixeira-de Mello, Franco A1 - Tonkin, Jonathan D. A1 - Uusheimo, Sari A1 - Veach, Allison M. A1 - Vilbaste, Sirje A1 - Vought, Lena B. M. A1 - Wang, Chiao-Ping A1 - Webster, Jackson R. A1 - Wilson, Paul B. A1 - Woelfl, Stefan A1 - Xenopoulos, Marguerite A. A1 - Yates, Adam G. A1 - Yoshimura, Chihiro A1 - Yule, Catherine M. A1 - Zhang, Yixin X. A1 - Zwart, Jacob A. T1 - Global patterns and drivers of ecosystem functioning in rivers and riparian zones JF - Science Advances N2 - River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale. Y1 - 2019 U6 - https://doi.org/10.1126/sciadv.aav0486 SN - 2375-2548 VL - 5 IS - 1 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Blanchard, Ingrid A1 - Abeykoon, Sumith A1 - Frost, Daniel J. A1 - Rubie, David C. T1 - Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions JF - American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America N2 - The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the effects of silicate melt composition and its capac-ity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the effect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth's primitive magma ocean, and show that FeS will exsolve from the molten silicate and can effectively be extracted to the core by a process that has been termed the "Hadean Matte." We also discuss briefly the implications of our results for the lunar magma ocean. KW - Peridotitic melts KW - sulfur solubility KW - high pressure KW - high temperature KW - magma ocean Y1 - 2021 U6 - https://doi.org/10.2138/am-2021-7649 SN - 0003-004X SN - 1945-3027 VL - 106 IS - 11 SP - 1835 EP - 1843 PB - Mineralogical Society of America CY - Washington, DC [u.a.] ER -