TY - JOUR A1 - van der Valk, Ralf J. P. A1 - Kreiner-Moller, Eskil A1 - Kooijman, Marjolein N. A1 - Guxens, Monica A1 - Stergiakouli, Evangelia A1 - Saaf, Annika A1 - Bradfield, Jonathan P. A1 - Geller, Frank A1 - Hayes, M. Geoffrey A1 - Cousminer, Diana L. A1 - Koerner, Antje A1 - Thiering, Elisabeth A1 - Curtin, John A. A1 - Myhre, Ronny A1 - Huikari, Ville A1 - Joro, Raimo A1 - Kerkhof, Marjan A1 - Warrington, Nicole M. A1 - Pitkanen, Niina A1 - Ntalla, Ioanna A1 - Horikoshi, Momoko A1 - Veijola, Riitta A1 - Freathy, Rachel M. A1 - Teo, Yik-Ying A1 - Barton, Sheila J. A1 - Evans, David M. A1 - Kemp, John P. A1 - St Pourcain, Beate A1 - Ring, Susan M. A1 - Smith, George Davey A1 - Bergstrom, Anna A1 - Kull, Inger A1 - Hakonarson, Hakon A1 - Mentch, Frank D. A1 - Bisgaard, Hans A1 - Chawes, Bo Lund Krogsgaard A1 - Stokholm, Jakob A1 - Waage, Johannes A1 - Eriksen, Patrick A1 - Sevelsted, Astrid A1 - Melbye, Mads A1 - van Duijn, Cornelia M. A1 - Medina-Gomez, Carolina A1 - Hofman, Albert A1 - de Jongste, Johan C. A1 - Taal, H. Rob A1 - Uitterlinden, Andre G. A1 - Armstrong, Loren L. A1 - Eriksson, Johan A1 - Palotie, Aarno A1 - Bustamante, Mariona A1 - Estivill, Xavier A1 - Gonzalez, Juan R. A1 - Llop, Sabrina A1 - Kiess, Wieland A1 - Mahajan, Anubha A1 - Flexeder, Claudia A1 - Tiesler, Carla M. T. A1 - Murray, Clare S. A1 - Simpson, Angela A1 - Magnus, Per A1 - Sengpiel, Verena A1 - Hartikainen, Anna-Liisa A1 - Keinanen-Kiukaanniemi, Sirkka A1 - Lewin, Alexandra A1 - Alves, Alexessander Da Silva Couto A1 - Blakemore, Alexandra I. F. A1 - Buxton, Jessica L. A1 - Kaakinen, Marika A1 - Rodriguez, Alina A1 - Sebert, Sylvain A1 - Vaarasmaki, Marja A1 - Lakka, Timo A1 - Lindi, Virpi A1 - Gehring, Ulrike A1 - Postma, Dirkje S. A1 - Ang, Wei A1 - Newnham, John P. A1 - Lyytikainen, Leo-Pekka A1 - Pahkala, Katja A1 - Raitakari, Olli T. A1 - Panoutsopoulou, Kalliope A1 - Zeggini, Eleftheria A1 - Boomsma, Dorret I. A1 - Groen-Blokhuis, Maria A1 - Ilonen, Jorma A1 - Franke, Lude A1 - Hirschhorn, Joel N. A1 - Pers, Tune H. A1 - Liang, Liming A1 - Huang, Jinyan A1 - Hocher, Berthold A1 - Knip, Mikael A1 - Saw, Seang-Mei A1 - Holloway, John W. A1 - Melen, Erik A1 - Grant, Struan F. A. A1 - Feenstra, Bjarke A1 - Lowe, William L. A1 - Widen, Elisabeth A1 - Sergeyev, Elena A1 - Grallert, Harald A1 - Custovic, Adnan A1 - Jacobsson, Bo A1 - Jarvelin, Marjo-Riitta A1 - Atalay, Mustafa A1 - Koppelman, Gerard H. A1 - Pennell, Craig E. A1 - Niinikoski, Harri A1 - Dedoussis, George V. A1 - Mccarthy, Mark I. A1 - Frayling, Timothy M. A1 - Sunyer, Jordi A1 - Timpson, Nicholas J. A1 - Rivadeneira, Fernando A1 - Bonnelykke, Klaus A1 - Jaddoe, Vincent W. V. T1 - A novel common variant in DCST2 is associated with length in early life and height in adulthood JF - Human molecular genetics N2 - Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 x 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; beta = 0.046, SE = 0.008, P = 2.46 x 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 x 10(-4)) and adult height (N = 127 513; P = 1.45 x 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height. Y1 - 2015 U6 - https://doi.org/10.1093/hmg/ddu510 SN - 0964-6906 SN - 1460-2083 VL - 24 IS - 4 SP - 1155 EP - 1168 PB - Oxford Univ. Press CY - Oxford ER - TY - CHAP A1 - Schöniger, Franziska A1 - Resch, Gustav A1 - Kleinschmitt, Christoph A1 - Franke, Katja A1 - Thonig, Richard A1 - Lilliestam, Johan ED - Uyar, Tanay Sıdkı ED - Javani, Nader T1 - The need for dispatchable RES BT - a closer look at the future role of CSP in Europe T2 - Renewable energy based solutions N2 - Concentrating Solar Power (CSP) offers flexible and decarbonised power generation and is one of the few switchable renewable technologies that can generate renewable power on demand. Today (2018), CSP only contributes 5 TWh to European electricity generation but has the potential to become an important generation asset for decarbonising the electricity sector within Europe as well as globally. This chapter examines how factors and key political decisions lead to different futures and the associated CSP use in Europe in the years up to 2050. In a second step, we characterise the scenarios with the associated system costs and the costs of the support policy. We show that the role of CSP in Europe depends crucially on political decisions and the success or failure of policies outside of renewable energies. In particular, the introduction of CSP depends on the general ambitions for decarbonisation, the level of cross-border trade in electricity from renewable sources and is made possible by the existence of a strong grid connection between the southern and northern European Member States and by future growth in electricity demand. The presence of other baseload technologies, particularly nuclear energy in France, diminishes the role and need for CSP. Assuming a favourable technological development, we find a strong role for CSP in Europe in all modelled scenarios: Contribution of 100 TWh to 300 TWh of electricity to a future European electricity system. The current European CSP fleet would have to be increased by a factor of 20 to 60 over the next 30 years. To achieve this, stable financial support for CSP would be required. Depending on framework conditions and assumptions, the amount of support ranges at the EU level from € 0.4 to 2 billion per year, which represents only a small proportion of the total support requirement for the energy system transformation. Cooperation between the Member States could further help reduce these costs. Y1 - 2022 SN - 978-3-031-05124-1 SN - 978-3-031-05125-8 U6 - https://doi.org/10.1007/978-3-031-05125-8_8 VL - 87 SP - 219 EP - 239 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Resch, Gustav A1 - Schöniger, Franziska A1 - Kleinschmitt, Christoph A1 - Franke, Katja A1 - Thonig, Richard A1 - Lilliestam, Johan T1 - Deep decarbonization of the European power sector calls for dispatchable CSP JF - AIP conference proceedings N2 - Concentrating Solar Power (CSP) offers flexible and decarbonized power generation and is one of the few dispatchable renewable technologies able to generate renewable electricity on demand. Today (2018) CSP contributes only 5TWh to the European power generation, but it has the potential to become one of the key pillars for European decarbonization pathways. In this paper we investigate how factors and pivotal policy decisions leading to different futures and associated CSP deployment in Europe in the years up to 2050. In a second step we characterize the scenarios with their associated system cost and the costs of support policies. We show that the role of CSP in Europe critically depends on political developments and the success or failure of policies outside renewable power. In particular, the uptake of CSP depends on the overall decarbonization ambition, the degree of cross border trade of renewable electricity and is enabled by the presence of strong grid interconnection between Southern and Norther European Member States as well as by future electricity demand growth. The presence of other baseload technologies, prominently nuclear power in France, reduce the role and need for CSP. Assuming favorable technological development, we find a strong role for CSP in Europe in all modeled scenarios: contributing between 100TWh to 300TWh of electricity to a future European power system. This would require increasing the current European CSP fleet by a factor of 20 to 60 in the next 30 years. To achieve this financial support between € 0.4-2 billion per year into CSP would be needed, representing only a small share of overall support needs for power-system transformation. Cooperation of Member States could further help to reduce this cost. Y1 - 2022 U6 - https://doi.org/10.1063/5.0086710 SN - 1551-7616 SN - 0094-243X SP - 050006-1 EP - 050006-9 PB - American Institute of Physics CY - Melville ER -