TY - JOUR A1 - Lisso, Janina A1 - Schröder, Florian A1 - Müssig, Carsten T1 - EXO modifies sucrose and trehalose responses and connects the extracellular carbon status to growth JF - Frontiers in plant science N2 - Plants have the capacity to adapt growth to changing environmental conditions. This implies the modulation of metabolism according to the availability of carbon (C). Particular interest in the response to the C availability is based on the increasing atmospheric levels of CO2. Several regulatory pathways that link the C status to growth have emerged. The extracellular EXO protein is essential for cell expansion and promotes shoot and root growth. Homologous proteins were identified in evolutionarily distant green plants. We show here that the EXO protein connects growth with C responses. The exo mutant displayed altered responses to exogenous sucrose supplemented to the growth medium. Impaired growth of the mutant in synthetic medium was associated with the accumulation of starch and anthocyanins, altered expression of sugar-responsive genes, and increased abscisic acid levels. Thus, EXO modulates several responses related to the C availability. Growth retardation on medium supplemented with 2-deoxy-glucose, mannose, and palatinose was similar to the wildtype. Trehalose feeding stimulated root growth and shoot biomass production of exoplants where as it inhibited growth of the wildtype. The phenotypic features of the exo mutant suggest that apoplastic processes coordinate growth and C responses. KW - EXO KW - growth KW - sugar response KW - trehalose KW - apoplast Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00219 SN - 1664-462X VL - 4 IS - 25 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Jeltsch, Florian A1 - Bonte, Dries A1 - Pe'er, Guy A1 - Reineking, Björn A1 - Leimgruber, Peter A1 - Balkenhol, Niko A1 - Schröder-Esselbach, Boris A1 - Buchmann, Carsten M. A1 - Müller, Thomas A1 - Blaum, Niels A1 - Zurell, Damaris A1 - Böhning-Gaese, Katrin A1 - Wiegand, Thorsten A1 - Eccard, Jana A1 - Hofer, Heribert A1 - Reeg, Jette A1 - Eggers, Ute A1 - Bauer, Silke T1 - Integrating movement ecology with biodiversity research BT - exploring new avenues to address spatiotemporal biodiversity dynamics N2 - Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of ‘movement ecology’. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide ‘mobile links’ between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through ‘equalizing’ and ‘stabilizing’ mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 401 KW - mobile links KW - species coexistence KW - community dynamics KW - biodiversity conservation KW - long distance movement KW - landscape genetics KW - individual based modeling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401177 ER - TY - JOUR A1 - Jeltsch, Florian A1 - Bonte, Dries A1 - Peer, Guy A1 - Reineking, Björn A1 - Leimgruber, Peter A1 - Balkenhol, Niko A1 - Schröder-Esselbach, Boris A1 - Buchmann, Carsten M. A1 - Müller, Thomas A1 - Blaum, Niels A1 - Zurell, Damaris A1 - Böhning-Gaese, Katrin A1 - Wiegand, Thorsten A1 - Eccard, Jana A1 - Hofer, Heribert A1 - Reeg, Jette A1 - Eggers, Ute A1 - Bauer, Silke T1 - Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics Y1 - 2013 UR - http://download.springer.com/static/pdf/827/art%253A10.1186%252F2051-3933-1- 6.pdf?auth66=1394891271_f1a4cb74d6be42ee3f8872ef2ca22c24&ext=.pdf U6 - https://doi.org/10.1186/2051-3933-1-6 ER -