TY - JOUR A1 - Warrington, Nicole A1 - Beaumont, Robin A1 - Horikoshi, Momoko A1 - Day, Felix R. A1 - Helgeland, Øyvind A1 - Laurin, Charles A1 - Bacelis, Jonas A1 - Peng, Shouneng A1 - Hao, Ke A1 - Feenstra, Bjarke A1 - Wood, Andrew R. A1 - Mahajan, Anubha A1 - Tyrrell, Jessica A1 - Robertson, Neil R. A1 - Rayner, N. William A1 - Qiao, Zhen A1 - Moen, Gunn-Helen A1 - Vaudel, Marc A1 - Marsit, Carmen A1 - Chen, Jia A1 - Nodzenski, Michael A1 - Schnurr, Theresia M. A1 - Zafarmand, Mohammad Hadi A1 - Bradfield, Jonathan P. A1 - Grarup, Niels A1 - Kooijman, Marjolein N. A1 - Li-Gao, Ruifang A1 - Geller, Frank A1 - Ahluwalia, Tarunveer Singh A1 - Paternoster, Lavinia A1 - Rueedi, Rico A1 - Huikari, Ville A1 - Hottenga, Jouke-Jan A1 - Lyytikäinen, Leo-Pekka A1 - Cavadino, Alana A1 - Metrustry, Sarah A1 - Cousminer, Diana L. A1 - Wu, Ying A1 - Thiering, Elisabeth Paula A1 - Wang, Carol A. A1 - Have, Christian Theil A1 - Vilor-Tejedor, Natalia A1 - Joshi, Peter K. A1 - Painter, Jodie N. A1 - Ntalla, Ioanna A1 - Myhre, Ronny A1 - Pitkänen, Niina A1 - van Leeuwen, Elisabeth M. A1 - Joro, Raimo A1 - Lagou, Vasiliki A1 - Richmond, Rebecca C. A1 - Espinosa, Ana A1 - Barton, Sheila J. A1 - Inskip, Hazel M. A1 - Holloway, John W. A1 - Santa-Marina, Loreto A1 - Estivill, Xavier A1 - Ang, Wei A1 - Marsh, Julie A. A1 - Reichetzeder, Christoph A1 - Marullo, Letizia A1 - Hocher, Berthold A1 - Lunetta, Kathryn L. A1 - Murabito, Joanne M. A1 - Relton, Caroline L. A1 - Kogevinas, Manolis A1 - Chatzi, Leda A1 - Allard, Catherine A1 - Bouchard, Luigi A1 - Hivert, Marie-France A1 - Zhang, Ge A1 - Muglia, Louis J. A1 - Heikkinen, Jani A1 - Morgen, Camilla S. A1 - van Kampen, Antoine H. C. A1 - van Schaik, Barbera D. C. A1 - Mentch, Frank D. A1 - Langenberg, Claudia A1 - Scott, Robert A. A1 - Zhao, Jing Hua A1 - Hemani, Gibran A1 - Ring, Susan M. A1 - Bennett, Amanda J. A1 - Gaulton, Kyle J. A1 - Fernandez-Tajes, Juan A1 - van Zuydam, Natalie R. A1 - Medina-Gomez, Carolina A1 - de Haan, Hugoline G. A1 - Rosendaal, Frits R. A1 - Kutalik, Zoltán A1 - Marques-Vidal, Pedro A1 - Das, Shikta A1 - Willemsen, Gonneke A1 - Mbarek, Hamdi A1 - Müller-Nurasyid, Martina A1 - Standl, Marie A1 - Appel, Emil V. R. A1 - Fonvig, Cilius Esmann A1 - Trier, Caecilie A1 - van Beijsterveldt, Catharina E. M. A1 - Murcia, Mario A1 - Bustamante, Mariona A1 - Bonàs-Guarch, Sílvia A1 - Hougaard, David M. A1 - Mercader, Josep M. A1 - Linneberg, Allan A1 - Schraut, Katharina E. A1 - Lind, Penelope A. A1 - Medland, Sarah Elizabeth A1 - Shields, Beverley M. A1 - Knight, Bridget A. A1 - Chai, Jin-Fang A1 - Panoutsopoulou, Kalliope A1 - Bartels, Meike A1 - Sánchez, Friman A1 - Stokholm, Jakob A1 - Torrents, David A1 - Vinding, Rebecca K. A1 - Willems, Sara M. A1 - Atalay, Mustafa A1 - Chawes, Bo L. A1 - Kovacs, Peter A1 - Prokopenko, Inga A1 - Tuke, Marcus A. A1 - Yaghootkar, Hanieh A1 - Ruth, Katherine S. A1 - Jones, Samuel E. A1 - Loh, Po-Ru A1 - Murray, Anna A1 - Weedon, Michael N. A1 - Tönjes, Anke A1 - Stumvoll, Michael A1 - Michaelsen, Kim Fleischer A1 - Eloranta, Aino-Maija A1 - Lakka, Timo A. A1 - van Duijn, Cornelia M. A1 - Kiess, Wieland A1 - Koerner, Antje A1 - Niinikoski, Harri A1 - Pahkala, Katja A1 - Raitakari, Olli T. A1 - Jacobsson, Bo A1 - Zeggini, Eleftheria A1 - Dedoussis, George V. A1 - Teo, Yik-Ying A1 - Saw, Seang-Mei A1 - Montgomery, Grant W. A1 - Campbell, Harry A1 - Wilson, James F. A1 - Vrijkotte, Tanja G. M. A1 - Vrijheid, Martine A1 - de Geus, Eco J. C. N. A1 - Hayes, M. Geoffrey A1 - Kadarmideen, Haja N. A1 - Holm, Jens-Christian A1 - Beilin, Lawrence J. A1 - Pennell, Craig E. A1 - Heinrich, Joachim A1 - Adair, Linda S. A1 - Borja, Judith B. A1 - Mohlke, Karen L. A1 - Eriksson, Johan G. A1 - Widen, Elisabeth E. A1 - Hattersley, Andrew T. A1 - Spector, Tim D. A1 - Kaehoenen, Mika A1 - Viikari, Jorma S. A1 - Lehtimaeki, Terho A1 - Boomsma, Dorret I. A1 - Sebert, Sylvain A1 - Vollenweider, Peter A1 - Sorensen, Thorkild I. A. A1 - Bisgaard, Hans A1 - Bonnelykke, Klaus A1 - Murray, Jeffrey C. A1 - Melbye, Mads A1 - Nohr, Ellen A. A1 - Mook-Kanamori, Dennis O. A1 - Rivadeneira, Fernando A1 - Hofman, Albert A1 - Felix, Janine F. A1 - Jaddoe, Vincent W. V. A1 - Hansen, Torben A1 - Pisinger, Charlotta A1 - Vaag, Allan A. A1 - Pedersen, Oluf A1 - Uitterlinden, Andre G. A1 - Jarvelin, Marjo-Riitta A1 - Power, Christine A1 - Hypponen, Elina A1 - Scholtens, Denise M. A1 - Lowe, William L. A1 - Smith, George Davey A1 - Timpson, Nicholas J. A1 - Morris, Andrew P. A1 - Wareham, Nicholas J. A1 - Hakonarson, Hakon A1 - Grant, Struan F. A. A1 - Frayling, Timothy M. A1 - Lawlor, Debbie A. A1 - Njolstad, Pal R. A1 - Johansson, Stefan A1 - Ong, Ken K. A1 - McCarthy, Mark I. A1 - Perry, John R. B. A1 - Evans, David M. A1 - Freathy, Rachel M. T1 - Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors JF - Nature genetics N2 - Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming. Y1 - 2019 SN - 1061-4036 SN - 1546-1718 VL - 51 IS - 5 SP - 804 EP - + PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Willner, Sven N. A1 - Levermann, Anders A1 - Zhao, Fang A1 - Frieler, Katja T1 - Adaptation required to preserve future high-end river flood risk at present levels JF - Science Advances N2 - Earth’s surface temperature will continue to rise for another 20 to 30 years even with the strongest carbon emission reduction currently considered. The associated changes in rainfall patterns can result in an increased flood risk worldwide. We compute the required increase in flood protection to keep high-end fluvial flood risk at present levels. The analysis is carried out worldwide for subnational administrative units. Most of the United States, Central Europe, and Northeast and West Africa, as well as large parts of India and Indonesia, require the strongest adaptation effort. More than half of the United States needs to at least double their protection within the next two decades. Thus, the need for adaptation to increased river flood is a global problem affecting industrialized regions as much as developing countries. Y1 - 2018 U6 - https://doi.org/10.1126/sciadv.aao1914 SN - 2375-2548 VL - 4 IS - 1 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Ni, Jian A1 - Zhao, Yan A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the Bolling/Allerod period (B/A; ca. 14.5 ka BP) and again at the beginning of the Holocene (ca. 11.5 ka BP), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid Holocene (ca. 8 ka BP) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka BP (ECHAM5/JSBACH similar to 1.125 degrees spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America. (C) 2016 Elsevier Ltd. All rights reserved. KW - Pollen KW - AVHRR KW - Modern analogue technique KW - Quantitative reconstruction KW - East Asian summer monsoon Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.02.001 SN - 0277-3791 VL - 137 SP - 33 EP - 44 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Telford, Richard J. A1 - Ni, Jian A1 - Xu, Qinghai A1 - Chen, Fahu A1 - Liu, Xingqi A1 - Stebich, Martina A1 - Zhao, Yan A1 - Herzschuh, Ulrike T1 - Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (P-ann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7 degrees N, 100.5 degrees E; north-east Tibetan Plateau), Gonghai Lake (38.9 degrees N, 112.2 degrees E; north China) and Sihailongwan Lake (42.3 degrees N, 126.6 degrees E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to radii between ca. 1000 and 1500 km because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. (C) 2017 Elsevier Ltd. All rights reserved. KW - Analogue quality KW - Statistical significance KW - Cross-validation KW - Holocene KW - Climate reconstruction KW - WA-PLS KW - MAT Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.10.030 SN - 0277-3791 VL - 178 SP - 37 EP - 53 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Cao, Xianyong A1 - Laepple, Thomas A1 - Dallmeyer, Anne A1 - Telford, Richard J. A1 - Ni, Jian A1 - Chen, Fahu A1 - Kong, Zhaochen A1 - Liu, Guangxiu A1 - Liu, Kam-Biu A1 - Liu, Xingqi A1 - Stebich, Martina A1 - Tang, Lingyu A1 - Tian, Fang A1 - Wang, Yongbo A1 - Wischnewski, Juliane A1 - Xu, Qinghai A1 - Yan, Shun A1 - Yang, Zhenjing A1 - Yu, Ge A1 - Zhang, Yun A1 - Zhao, Yan A1 - Zheng, Zhuo T1 - Position and orientation of the westerly jet determined Holocene rainfall patterns in China JF - Nature Communications N2 - Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-09866-8 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Zhao, Yan A1 - Ni, Jian A1 - Herzschuh, Ulrike T1 - Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Temporal and spatial stability of the vegetation climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (P-ann) and mean temperature of the warmest month (Mt(wa)) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen climate relationships. Our analyses suggest that the importance of P-ann compared with Mt(wa) for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of P-ann for Picea and Pinus increases and has become the main determinant. This change in the climate tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially. KW - Boosted regression trees KW - China KW - Holocene KW - Niche stability KW - Pollen-climate relationship KW - Uniformitarianism Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.11.027 SN - 0277-3791 VL - 156 SP - 1 EP - 11 PB - Elsevier CY - Oxford ER -