TY - JOUR A1 - Morf, Carolyn C. A1 - Schurch, Eva A1 - Kufener, Albrecht A1 - Siegrist, Philip A1 - Vater, Aline A1 - Back, Mitja A1 - Mestel, Robert A1 - Schröder-Abe, Michela T1 - Expanding the Nomological Net of the Pathological Narcissism Inventory: German Validation and Extension in a Clinical Inpatient Sample JF - Assessment KW - narcissism KW - assessment KW - Pathological Narcissism Inventory KW - construct validity KW - nomological network Y1 - 2017 U6 - https://doi.org/10.1177/1073191115627010 SN - 1073-1911 SN - 1552-3489 VL - 24 SP - 419 EP - 443 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Li, Chen A1 - Stoma, Svetlana A1 - Lotta, Luca A. A1 - Warner, Sophie A1 - Albrecht, Eva A1 - Allione, Alessandra A1 - Arp, Pascal P. A1 - Broer, Linda A1 - Buxton, Jessica L. A1 - Boeing, Heiner A1 - Langenberg, Claudia A1 - Codd, Veryan T1 - Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length JF - American Journal of Human Genetics N2 - Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1 , PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease. KW - Mendelian randomization KW - risk KW - variants KW - disease KW - cancer KW - loci KW - database KW - genes KW - heart KW - gwas Y1 - 2019 VL - 106 IS - 3 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Li, Chen A1 - Stoma, Svetlana A1 - Lotta, Luca A. A1 - Warner, Sophie A1 - Albrecht, Eva A1 - Allione, Alessandra A1 - Arp, Pascal P. A1 - Broer, Linda A1 - Buxton, Jessica L. A1 - Boeing, Heiner A1 - Langenberg, Claudia A1 - Codd, Veryan T1 - Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1 , PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1205 KW - Mendelian randomization KW - risk KW - variants KW - disease KW - cancer KW - loci KW - database KW - genes KW - heart KW - gwas Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526843 SN - 1866-8372 IS - 3 ER - TY - JOUR A1 - Lilie, Hauke A1 - Bär, Dorit A1 - Kettner, Karina A1 - Weininger, Ulrich A1 - Balbach, Jochen A1 - Naumann, Manfred A1 - Müller, Eva-Christina A1 - Otto, Albrecht A1 - Gast, Klaus A1 - Golbik, Ralph T1 - Yeast hexokinase isoenzyme ScHxk2 : stability of a two-domain protein with discontinuous domains N2 - The hexokinase isoenzyme 2 of Saccharomyces cerevisiae (ScHxk2) represents an archetype of a two-domain protein with the active site located in a cleft between the two domains. Binding of the substrate glucose results in a rigid body movement of the two domains leading to a cleft closure of the active site. Both domains of this enzyme are composed of discontinuous peptide sequences. This structural feature is reflected in the stability and folding of the ScHxk2 protein. Structural transitions induced by urea treatment resulted in the population of a thermodynamically stable folding intermediate, which, however, does not correspond to a molecule with one domain folded and the other unfolded. As demonstrated by different spectroscopic techniques, both domains are structurally affected by the partial denaturation. The intermediate possesses only 40% of the native secondary structural content and a substantial increase in the Stokes radius as judged by circular dichroism and dynamic light scattering analyses. One-dimensional 1H NMR data prove that all tryptophan residues are in a non-native environment in the intermediate, indicating substantial changes in the tertiary structure. Still, the intermediate possesses quite a high stability for a transition intermediate of about ;G = ;22 kJ mol;1. Y1 - 2011 UR - http://peds.oxfordjournals.org/content/24/1-2/79.long SN - 0269-2139 ER - TY - JOUR A1 - Lilie, Hauke A1 - Baer, Dorit A1 - Kettner, Karina A1 - Weininger, Ulrich A1 - Balbach, Jochen A1 - Naumann, Manfred A1 - Mueller, Eva-Christina A1 - Otto, Albrecht A1 - Gast, Klaus A1 - Golbik, Ralph A1 - Kriegel, Thomas T1 - Yeast hexokinase isoenzyme ScHxk2 stability of a two-domain protein with discontinuous domains JF - Protein engineering design & selection N2 - The hexokinase isoenzyme 2 of Saccharomyces cerevisiae (ScHxk2) represents an archetype of a two-domain protein with the active site located in a cleft between the two domains. Binding of the substrate glucose results in a rigid body movement of the two domains leading to a cleft closure of the active site. Both domains of this enzyme are composed of discontinuous peptide sequences. This structural feature is reflected in the stability and folding of the ScHxk2 protein. Structural transitions induced by urea treatment resulted in the population of a thermodynamically stable folding intermediate, which, however, does not correspond to a molecule with one domain folded and the other unfolded. As demonstrated by different spectroscopic techniques, both domains are structurally affected by the partial denaturation. The intermediate possesses only 40% of the native secondary structural content and a substantial increase in the Stokes radius as judged by circular dichroism and dynamic light scattering analyses. One-dimensional H-1 NMR data prove that all tryptophan residues are in a non-native environment in the intermediate, indicating substantial changes in the tertiary structure. Still, the intermediate possesses quite a high stability for a transition intermediate of about Delta G = -22 kJ mol(-1). KW - dynamic light scattering KW - NMR KW - ScHxk2 KW - stability KW - transition intermediate Y1 - 2011 U6 - https://doi.org/10.1093/protein/gzq098 SN - 1741-0126 VL - 24 IS - 1-2 SP - 79 EP - 87 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Morf, Carolyn C. A1 - Schürch, Eva A1 - Küfner, Albrecht A1 - Siegrist, Philip A1 - Vater, Aline A1 - Back, Mitja A1 - Mestel, Robert A1 - Schröder-Abé, Michela T1 - Expanding the nomological net of the pathological narcissism inventory BT - German validation and extension in a clinical inpatient sample T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The Pathological Narcissism Inventory (PNI) is a multidimensional measure for assessing grandiose and vulnerable features in narcissistic pathology. The aim of the present research was to construct and validate a German translation of the PNI and to provide further information on the PNI's nomological net. Findings from a first study confirm the psychometric soundness of the PNI and replicate its seven-factor first-order structure. A second-order structure was also supported but with several equivalent models. A second study investigating associations with a broad range of measures (DSM Axis I and II constructs, emotions, personality traits, interpersonal and dysfunctional behaviors, and well-being) supported the concurrent validity of the PNI. Discriminant validity with the Narcissistic Personality Inventory was also shown. Finally, in a third study an extension in a clinical inpatient sample provided further evidence that the PNI is a useful tool to assess the more pathological end of narcissism. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 410 KW - narcissism KW - assessment KW - Pathological Narcissism Inventory KW - construct validity KW - nomological network Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-405182 IS - 410 ER - TY - JOUR A1 - Braunger, Steffen A1 - Mundt, Laura E. A1 - Wolff, Christian Michael A1 - Mews, Mathias A1 - Rehermann, Carolin A1 - Jost, Marko A1 - Tejada, Alvaro A1 - Eisenhauer, David A1 - Becker, Christiane A1 - Andres Guerra, Jorge A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Schubert, Martin C. A1 - Rech, Bernd A1 - Albrecht, Steve T1 - Cs(x)FA(1-x)Pb(l(1-y)Br(y))(3) Perovskite Compositions BT - the Appearance of Wrinkled Morphology and its Impact on Solar Cell Performance JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We report on the formation of wrinkle-patterned surface morphologies in cesium formamidinium-based Cs(x)FA(1-y)Pb(I1-yBry)(3) perovskite compositions with x = 0-0.3 and y = 0-0.3 under various spin-coating conditions. By varying the Cs and Br contents, the perovskite precursor solution concentration and the spin-coating procedure, the occurrence and characteristics of the wrinkle-shaped morphology can be tailored systematically. Cs(0.17)FA(0.83)Pb(I0.83Br0.17)(3) perovskite layers were analyzed regarding their surface roughness, microscopic structure, local and overall composition, and optoelectronic properties. Application of these films in p-i-n perovskite solar cells (PSCs) with indium-doped tin oxide/NiOx/perovskite/C-60/bathocuproine/Cu architecture resulted in up to 15.3 and 17.0% power conversion efficiency for the flat and wrinkled morphology, respectively. Interestingly, we find slightly red-shifted photoluminescence (PL) peaks for wrinkled areas and we are able to directly correlate surface topography with PL peak mapping. This is attributed to differences in the local grain size, whereas there is no indication for compositional demixing in the films. We show that the perovskite composition, crystallization kinetics, and layer thickness strongly influence the formation of wrinkles which is proposed to be related to the release of compressive strain during perovskite crystallization. Our work helps us to better understand film formation and to further improve the efficiency of PSCs with widely used mixed-perovskite compositions. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b06459 SN - 1932-7447 SN - 1932-7455 VL - 122 IS - 30 SP - 17123 EP - 17135 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kegelmann, Lukas A1 - Wolff, Christian Michael A1 - Awino, Celline A1 - Lang, Felix A1 - Unger, Eva L. A1 - Korte, Lars A1 - Dittrich, Thomas A1 - Neher, Dieter A1 - Rech, Bernd A1 - Albrecht, Steve T1 - It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis JF - ACS applied materials & interfaces N2 - Solar cells made from inorganic organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 degrees C is presented. The inorganic metal oxides TiO2 and SnO2, the organic fullerene derivatives C-60, PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop, the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO2, which shows a more prominent influence of defect states. Transient photoluminescence studies together with current voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0%. The results indicate reduced recombination losses for a double-layer TiO2/PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements. The herein demonstrated improvements of multilayer selective contacts may serve as a general design guideline for perovskite solar cells. KW - perovskite solar cell KW - electron contact KW - double-layer KW - regular planar architecture KW - hysteresis KW - fullerene KW - metal oxide Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b00900 SN - 1944-8244 VL - 9 SP - 17246 EP - 17256 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tockhorn, Philipp A1 - Sutter, Johannes A1 - Cruz Bournazou, Alexandros A1 - Wagner, Philipp A1 - Jäger, Klaus A1 - Yoo, Danbi A1 - Lang, Felix A1 - Grischek, Max A1 - Li, Bor A1 - Li, Jinzhao A1 - Shargaieva, Oleksandra A1 - Unger, Eva A1 - Al-Ashouri, Amran A1 - Köhnen, Eike A1 - Stolterfoht, Martin A1 - Neher, Dieter A1 - Schlatmann, Rutger A1 - Rech, Bernd A1 - Stannowski, Bernd A1 - Albrecht, Steve A1 - Becker, Christiane T1 - Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells JF - Nature nanotechnology N2 - Designing gentle sinusoidal nanotextures enables the realization of high-efficiency perovskite-silicon solar cells
Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%. Y1 - 2022 U6 - https://doi.org/10.1038/s41565-022-01228-8 SN - 1748-3387 SN - 1748-3395 VL - 17 IS - 11 SP - 1214 EP - 1221 PB - Nature Publishing Group CY - London [u.a.] ER - TY - JOUR A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Zhang, Jiahuan A1 - Pena-Camargo, Francisco A1 - Sveinbjornsson, Kari A1 - Zu, Fengshuo A1 - Menzel, Dorothee A1 - Warby, Jonathan A1 - Li, Jinzhao A1 - Koch, Norbert A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Albrecht, Steve T1 - Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells JF - Solar RRL N2 - Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO-2PACz hole-transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. KW - CsPbI2Br KW - efficiency potentials KW - inorganic perovskites KW - photoluminescence KW - solar cells KW - voltage losses Y1 - 2022 U6 - https://doi.org/10.1002/solr.202200690 SN - 2367-198X VL - 6 IS - 11 PB - Wiley-VCH CY - Weinheim ER -