TY - GEN A1 - Hanack, Katja A1 - Schloer, Anja A1 - Holzloehner, Pamela A1 - Listek, Martin A1 - Bauer, Cindy A1 - Butze, Monique A1 - Micheel, Burkhard A1 - Hentschel, Christian A1 - Sowa, Mandy A1 - Roggenbuck, Dirk A1 - Schierack, Peter A1 - Fuener, Jonas A1 - Schliebs, Erik A1 - Goihl, Alexander A1 - Reinhold, Dirk T1 - Camelid nanobodies specific to human pancreatic glycoprotein 2 T2 - The journal of immunology N2 - Pancreatic secretory zymogen-granule membrane glycoprotein 2 (GP2) has been identified to be a major autoantigenic target in Crohn’s disease patients. It was discussed recently that a long and a short isoform of GP2 exists whereas the short isoform is often detected by GP2-specific autoantibodies. In the outcome of inflammatory bowel diseases, these GP2-specific autoantibodies are discussed as new serological markers for diagnosis and therapeutic monitoring. To investigate this further, camelid nanobodies were generated by phage display and selected against the short isoform of GP2 in order to isolate specific tools for the discrimination of both isoforms. Nanobodies are single domain antibodies derived from camelid heavy chain only antibodies and characterized by a high stability and solubility. The selected candidates were expressed, purified and validated regarding their binding properties in different enzyme-linked immunosorbent assays formats, immunofluorescence, immunohistochemistry and surface plasmon resonance spectroscopy. Four different nanobodies could be selected whereof three recognize the short isoform of GP2 very specifically and one nanobody showed a high binding capacity for both isoforms. The KD values measured for all nanobodies were between 1.3 nM and 2.3 pM indicating highly specific binders suitable for the application as diagnostic tool in inflammatory bowel disease. Y1 - 2016 SN - 0022-1767 SN - 1550-6606 VL - 196 SP - 313 EP - 328 PB - American Assoc. of Immunologists CY - Bethesda ER - TY - JOUR A1 - Prieske, Olaf A1 - Krüger, Tom A1 - Aehle, Markus A1 - Bauer, Erik A1 - Granacher, Urs T1 - Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults BT - A Randomized Controlled Trial JF - Frontiers in Physiology N2 - Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45–60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5% for RST [90%CI: (−1.1%;10.1%), d = 1.23] and 2.6% for TPT [90%CI: (0.4%;4.8%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to −6.3% for RST [90%CI: (−11.4%;−1.1%), d = 1.45) and −2.7% for TPT [90%CI: (−4.2%;−1.2%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development. KW - specificity KW - sprinting KW - jumping KW - change-of-direction speed KW - balance Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.00156 SN - 1664-042X VL - 9 SP - 1 EP - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Prieske, Olaf A1 - Krüger, Tom A1 - Aehle, Markus A1 - Bauer, Erik A1 - Granacher, Urs T1 - Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults BT - A Randomized Controlled Trial T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45–60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5% for RST [90%CI: (−1.1%;10.1%), d = 1.23] and 2.6% for TPT [90%CI: (0.4%;4.8%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to −6.3% for RST [90%CI: (−11.4%;−1.1%), d = 1.45) and −2.7% for TPT [90%CI: (−4.2%;−1.2%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 383 KW - specificity KW - sprinting KW - jumping KW - change-of-direction speed KW - balance Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409645 IS - 383 ER - TY - JOUR A1 - Förstner, Bernd R. A1 - Tschorn, Mira A1 - Reinoso-Schiller, Nicolas A1 - Maričić, Lea Mascarell A1 - Röcher, Erik A1 - Kalman, Janos L. A1 - Stroth, Sanna A1 - Mayer, Annalina V. A1 - Schwarz, Kristina A1 - Kaiser, Anna A1 - Pfennig, Andrea A1 - Manook, André A1 - Ising, Marcus A1 - Heinig, Ingmar A1 - Pittig, Andre A1 - Heinz, Andreas A1 - Mathiak, Klaus A1 - Schulze, Thomas G. A1 - Schneider, Frank A1 - Kamp-Becker, Inge A1 - Meyer-Lindenberg, Andreas A1 - Padberg, Frank A1 - Banaschewski, Tobias A1 - Bauer, Michael A1 - Rupprecht, Rainer A1 - Wittchen, Hans-Ulrich A1 - Rapp, Michael A. T1 - Mapping research domain criteria using a transdiagnostic mini-RDoC assessment in mental disorders: a confirmatory factor analysis JF - European archives of psychiatry and clinical neuroscience N2 - This study aimed to build on the relationship of well-established self-report and behavioral assessments to the latent constructs positive (PVS) and negative valence systems (NVS), cognitive systems (CS), and social processes (SP) of the Research Domain Criteria (RDoC) framework in a large transnosological population which cuts across DSM/ICD-10 disorder criteria categories. One thousand four hundred and thirty one participants (42.1% suffering from anxiety/fear-related, 18.2% from depressive, 7.9% from schizophrenia spectrum, 7.5% from bipolar, 3.4% from autism spectrum, 2.2% from other disorders, 18.4% healthy controls, and 0.2% with no diagnosis specified) recruited in studies within the German research network for mental disorders for the Phenotypic, Diagnostic and Clinical Domain Assessment Network Germany (PD-CAN) were examined with a Mini-RDoC-Assessment including behavioral and self-report measures. The respective data was analyzed with confirmatory factor analysis (CFA) to delineate the underlying latent RDoC-structure. A revised four-factor model reflecting the core domains positive and negative valence systems as well as cognitive systems and social processes showed a good fit across this sample and showed significantly better fit compared to a one factor solution. The connections between the domains PVS, NVS and SP could be substantiated, indicating a universal latent structure spanning across known nosological entities. This study is the first to give an impression on the latent structure and intercorrelations between four core Research Domain Criteria in a transnosological sample. We emphasize the possibility of using already existing and well validated self-report and behavioral measurements to capture aspects of the latent structure informed by the RDoC matrix. KW - Diagnosis and classification KW - Research Domain Criteria KW - PD-CAN KW - Confirmatory factor analysis CFA KW - RDoC KW - Transdiagnostic Y1 - 2022 U6 - https://doi.org/10.1007/s00406-022-01440-6 SN - 0940-1334 SN - 1433-8491 VL - 273 IS - 3 SP - 527 EP - 539 PB - Springer Nature CY - Heidelberg ER -