TY - JOUR A1 - Spira, Dominik A1 - Buchmann, Nikolaus A1 - Koenig, Maximilian A1 - Rosada, Adrian A1 - Steinhagen-Thiessen, Elisabeth A1 - Demuth, Ilja A1 - Norman, Kristina T1 - Sex-specific differences in the association of vitamin D with low lean mass and frailty BT - results from the Berlin Aging Study II JF - Nutrition N2 - Background: Sex-specific differences in factors associated with aging and lifespan, such as sarcopenia and disease development, are increasingly recognized. The study aims to assess sex-specific aspects of the association between vitamin D insufficiency and low lean mass as well as between vitamin D insufficiency and the frailty phenotype. Methods: A total of 1102 participants (51% women) from the Berlin Aging Study II were included in this cross-sectional study. Vitamin D insufficiency was defined as a 25(OH)D level <50 nmol/L. Lean mass was assessed with dual-energy x-ray absorptiometry and corrected by body mass index. Low lean mass was defined according to the Foundations for the National Institutes of Health Sarcopenia Project criteria (appendicular lean mass/body mass index <0.789 in men and <0.512 in women) and frailty defined according to the Fried criteria. Results: In a risk factor adjusted analysis, the association of vitamin D insufficiency was significantly influenced by sex (P for interaction < 0.001). Men with vitamin D insufficiency had 1.8 times higher odds of having low lean mass, with no association between vitamin D insufficiency and low lean mass in women. Participants with vitamin D insufficiency had 1.5 higher odds of being prefrail/frail with no significant effect modification by sex. Conclusions: We found notable sex-specific differences in the association of vitamin D insufficiency with low lean mass but not of vitamin D insufficiency with frailty. Vitamin D might play a relevant role in the loss of lean mass in men but not women and might be a biological marker of an unfavorable aging process associated with early development of frailty regardless of sex. KW - Vitamin D insufficiency KW - Low lean mass KW - Frailty criteria Y1 - 2019 U6 - https://doi.org/10.1016/j.nut.2018.11.020 SN - 0899-9007 SN - 1873-1244 VL - 62 SP - 1 EP - 6 PB - Elsevier CY - New York ER - TY - JOUR A1 - Flöel, Agnes A1 - Werner, Cordula A1 - Grittner, Ulrike A1 - Hesse, Stefan A1 - Jöbges, Michael A1 - Knauss, Janet A1 - Seifert, Michael A1 - Steinhagen-Thiessen, Elisabeth A1 - Goevercin, Mehmet A1 - Dohle, Christian A1 - Fischer, Wolfgang A1 - Schlieder, Regina A1 - Nave, Alexander Heinrich A1 - Meisel, Andreas A1 - Ebinger, Martin A1 - Wellwood, Ian T1 - Physical fitness training in Subacute Stroke (PHYS-STROKE) - study protocol for a randomised controlled trial JF - Trials N2 - Background: Given the rising number of strokes worldwide, and the large number of individuals left with disabilities after stroke, novel strategies to reduce disability, increase functions in the motor and the cognitive domains, and improve quality of life are of major importance. Physical activity is a promising intervention to address these challenges but, as yet, there is no study demonstrating definite outcomes. Our objective is to assess whether additional treatment in the form of physical fitness-based training for patients early after stroke will provide benefits in terms of functional outcomes, in particular gait speed and the Barthel Index (co-primary outcome measures) reflecting activities of daily living (ADL). We will gather secondary functional outcomes as well as mechanistic parameters in an exploratory approach. Methods/Design: Our phase III randomised controlled trial will recruit 215 adults with moderate to severe limitations of walking and ADL 5 to 45 days after stroke onset. Participants will be stratified for the prognostic variables of "centre", "age", and "stroke severity", and randomly assigned to one of two groups. The interventional group receives physical fitness training delivered as supported or unsupported treadmill training (cardiovascular active aerobic training; five times per week, over 4 weeks; each session 50 minutes; total of 20 additional physical fitness training sessions) in addition to standard rehabilitation treatment. The control intervention consists of relaxation sessions (non-cardiovascular active; five times per week week, over 4 weeks; each session 50 minutes) in addition to standard rehabilitation treatment. Co-primary efficacy endpoints will be gait speed (in m/s, 10 m walk) and the Barthel Index (100 points total) at 3 months post-stroke, compared to baseline measurements. Secondary outcomes include standard measures of quality of life, sleep and mood, cognition, arm function, maximal oxygen uptake, and cardiovascular risk factors including blood pressure, pulse, waist-to-hip ratio, markers of inflammation, immunity and the insulin-glucose pathway, lipid profile, and others. Discussion: The goal of this endpoint-blinded, phase III randomised controlled trial is to provide evidence to guide post-stroke physical fitness-based rehabilitation programmes, and to elucidate the mechanisms underlying this intervention. Y1 - 2014 U6 - https://doi.org/10.1186/1745-6215-15-45 SN - 1745-6215 VL - 15 PB - BioMed Central CY - London ER - TY - GEN A1 - Weber, Daniela A1 - Kochlik, Bastian Max A1 - Demuth, Ilja A1 - Steinhagen-Thiessen, Elisabeth A1 - Grune, Tilman A1 - Norman, Kristina T1 - Plasma carotenoids, tocopherols and retinol BT - Association with age in the Berlin Aging Study II T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Regular consumption of fruits and vegetables, which is related to high plasma levels of lipid-soluble micro-nutrients such as carotenoids and tocopherols, is linked to lower incidences of various age-related diseases. Differences in lipid-soluble micronutrient blood concentrations seem to be associated with age. Our retrospective analysis included men and women aged 22-37 and 60-85 years from the Berlin Aging Study II. Participants with simultaneously available plasma samples and dietary data were included (n = 1973). Differences between young and old groups were found for plasma lycopene, alpha-carotene, alpha-tocopherol, beta-cryptoxanthin (only in women), and gamma-tocopherol (only in men). beta-Carotene, retinol and lutein/zeaxanthin did not differ between young and old participants regardless of the sex. We found significant associations for lycopene, alpha-carotene (both inverse), alpha-tocopherol, gamma-tocopherol, and beta-carotene (all positive) with age. Adjusting for BMI, smoking status, season, cholesterol and dietary intake confirmed these associations, except for beta-carotene. These micronutrients are important antioxidants and associated with lower incidence of age-related diseases, therefore it is important to understand the underlying mechanisms in order to implement dietary strategies for the prevention of age-related diseases. To explain the lower lycopene and alpha-carotene concentration in older subjects, bioavailability studies in older participants are necessary. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1409 KW - carotenoids KW - tocopherols KW - micronutrients KW - age KW - plasma KW - food frequency questionnaire Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515996 SN - 1866-8372 ER - TY - JOUR A1 - Weber, Daniela A1 - Kochlik, Bastian Max A1 - Demuth, Ilja A1 - Steinhagen-Thiessen, Elisabeth A1 - Grune, Tilman A1 - Norman, Kristina T1 - Plasma carotenoids, tocopherols and retinol BT - Association with age in the Berlin Aging Study II JF - Redox Biology N2 - Regular consumption of fruits and vegetables, which is related to high plasma levels of lipid-soluble micro-nutrients such as carotenoids and tocopherols, is linked to lower incidences of various age-related diseases. Differences in lipid-soluble micronutrient blood concentrations seem to be associated with age. Our retrospective analysis included men and women aged 22-37 and 60-85 years from the Berlin Aging Study II. Participants with simultaneously available plasma samples and dietary data were included (n = 1973). Differences between young and old groups were found for plasma lycopene, alpha-carotene, alpha-tocopherol, beta-cryptoxanthin (only in women), and gamma-tocopherol (only in men). beta-Carotene, retinol and lutein/zeaxanthin did not differ between young and old participants regardless of the sex. We found significant associations for lycopene, alpha-carotene (both inverse), alpha-tocopherol, gamma-tocopherol, and beta-carotene (all positive) with age. Adjusting for BMI, smoking status, season, cholesterol and dietary intake confirmed these associations, except for beta-carotene. These micronutrients are important antioxidants and associated with lower incidence of age-related diseases, therefore it is important to understand the underlying mechanisms in order to implement dietary strategies for the prevention of age-related diseases. To explain the lower lycopene and alpha-carotene concentration in older subjects, bioavailability studies in older participants are necessary. KW - carotenoids KW - tocopherols KW - micronutrients KW - age KW - plasma KW - food frequency questionnaire Y1 - 2020 U6 - https://doi.org/10.1016/j.redox.2020.101461 SN - 2213-2317 VL - 32 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Buchmann, Nikolaus A1 - Fielitz, Jens A1 - Spira, Dominik A1 - König, Maximilian A1 - Norman, Kristina A1 - Pawelec, Graham A1 - Goldeck, David A1 - Demuth, Ilja A1 - Steinhagen-Thiessen, Elisabeth T1 - Muscle mass and inflammation in older adults: impact of the metabolic syndrome JF - Gerontology N2 - Background: Inflammatory processes are a cause of accelerated loss of muscle mass. Metabolic syndrome (MetS) is a highly prevalent age-related condition, which may promote and be promoted by inflammation. However, whether inflammation in MetS (metaflammation) is associated with lower muscle mass is still unclear. Methods: Complete cross-sectional data on body composition, MetS, and the inflammatory markers interleukin (IL)-1 beta, IL-6, IL-10, tumor necrosis factor (TNF), and C-reactive protein (CRP) were available for 1,377 BASE-II participants (51.1% women; 68 +/- 4 years old). Appendicular lean mass (ALM) was assessed by dual-energy X-ray absorptiometry. Low muscle mass (low ALM-to-BMI ratio [ALMBMI]) was defined according to the Foundation for the National Institutes of Health (FNIH) Sarcopenia Project. Regression models, adjusted for an increasing number of confounders (sex, age, physical activity, morbidities, diabetes mellitus type II, TSH, albumin, HbA1c, smoking habits, alcohol intake, education, and energy intake/day), were used to calculate the association between low ALMBMI and high inflammation (tertile 3) according to MetS. Results: MetS was present in 36.2% of the study population, and 9% had low ALMBMI. In the whole study population, high CRP (odds ratio [OR]: 2.7 [95% CI: 1.6-4.7; p = 0.001]) and high IL-6 (OR: 2.1 [95% CI: 1.2-1.9; p = 0.005]) were associated with low ALMBMI. In contrast, no significant association was found between TNF, IL-10, or IL-1 beta with low ALMBMI. When participants were stratified by MetS, results for IL-6 remained significant only in participants with MetS. Conclusions: Among BASE-II participants, low ALMBMI was associated with inflammation. Low-grade inflammation triggered by disease state, especially in the context of MetS, might favor loss of muscle mass, so a better control of MetS might help to prevent sarcopenia. Intervention studies to test whether strategies to prevent MetS might also prevent loss of muscle mass seem to be promising. KW - metabolic syndrome KW - muscle mass KW - inflammation Y1 - 2022 U6 - https://doi.org/10.1159/000520096 SN - 0304-324X SN - 1423-0003 VL - 68 IS - 9 SP - 989 EP - 998 PB - Karger CY - Basel ER -